1 / 18

Plant Nutrition

Plant Nutrition. Chapter 38. Plants Shoots - above ground Roots - below ground dependent on each other. Roots would starve without the sugar produced in the photosynthetic tissues of the shoot. The shoot system depends on water and minerals absorbed from the soil by the roots.

zea
Télécharger la présentation

Plant Nutrition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plant Nutrition Chapter 38

  2. Plants Shoots - above ground Roots - below ground dependent on each other. • Roots would starve without the sugar produced in the photosynthetic tissues of the shoot. • The shoot system depends on water and minerals absorbed from the soil by the roots.

  3. Shoots - stems and leaves. • vegetative (leaf bearing) or reproductive (flower bearing). • Stem has nodes, leaves attached, and internodes, segments between nodes. • Growth of a young shoot is at its terminal bud • axillary bud - branch. The presence of a terminal bud inhibits the growth of axillary buds, a phenomenon called apical dominance.

  4. A plant is capable of indeterminate growth because it has perpetually embryonic tissues called meristems in its regions of growth. Indeterminate growth vs. Determinate growth Apical meristems, - elongation for primary growth of roots and shoots Woody plants also show secondary growth, thickening of roots and shoots due to lateral meristems

  5. Modified shootsstolons, rhizomes, tubers, and bulbs, are often mistaken for roots. Asexual reproduction.

  6. Leaves are the main photosynthetic organs of most plants, but green stems are also photosynthetic. • leaves consist of a flattened blade, the petiole, which joins the leaf to a stem node.

  7. Monocots have parallel major veins length of the blade Dicot have a multibranched network of major veins.

  8. Roots anchor the plant in the soil, absorb minerals and water, and store food.

  9. Monocots have fibrous root systems. Dicots have taproots.

  10. Plants, photosynthetic autotrophs transform inorganic compounds into organic ones. A plant needs sunlight as its energy source for photosynthesis and CO2 and inorganic ions, to synthesize organic molecules. • Roots, through root hairs, absorb water and minerals from the soil. • Carbon dioxide diffuses into leaves from the surrounding air through stomata.

  11. Essential nutrients • If the absence of a particular mineral causes a plant to become abnormal when compared to controls grown in a complete medium, then that element is essential.

  12. Macronutrients - Elements required by plants in relatively large quantities • There are 9 macronutrients : carbon, oxygen, hydrogen, nitrogen, sulfur, phosphorus, potassium, calcium, and magnesium.• Micronutrients -Elements that plants need in very small amounts • The 8 micronutrients are iron, chlorine, copper, zinc, magnanese, molybdenum, boron, and nickel.Most of these function as cofactors of enzymatic reactions.

  13. • Loams, equal amounts of sand, silt and clay. Loamy soils provide a large surface area for retaining minerals and water provide air spaces(oxygen) to the root for cellular respiration.• Cation exchange The soil pH affects cation exchange and influences the chemical form of all minerals. • Even though an essential element may be abundant in the soil, plants may be starving for that element because it is bound too tightly to clay or is in a chemical form that the plant cannot absorb.

  14. The atmospheres is nearly 80% nitrogen, but plants cannot use nitrogen in the form of N2. • It must first be converted to ammonium (NH4+) or nitrate (NO3-). Nitrogen is lost from this local cycle when soil microbes called denitrifying bacteria converts NO3- to N2 which diffuses to the atmosphere. Other bacteria, nitrogen-fixing bacteria, restock nitrogenous minerals in the soil by converting N2 to NH3 (ammonia), via nitrogen fixation.

  15. A legume’s roots have swellings called nodules, composed of plant cells that contain nitrogen-fixing bacteria of the genus Rhizobium. • Inside the nodule, Rhizobium bacteria assume a form called bacteriods, which are contained within vesicles formed by the root cell.

  16. Parasitic plants extract nutrients from other plants Carnivorous plants supplement their mineral nutrition by digesting animals• Living in acid bogs and other habitats where soil conditions are poor are plants that fortify themselves by occasionally feeding on animals.

More Related