1 / 40

R In Actuarial Pricing Teams

R In Actuarial Pricing Teams. Chibisi Chima-Okereke Mango Solutions. Agenda. Actuarial Survey Geographical Area. UK Actuaries & CAS (Casualty Actuarial Society). Source Palisade ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf. Main Areas Of Work.

zeheb
Télécharger la présentation

R In Actuarial Pricing Teams

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. R In Actuarial Pricing Teams Chibisi Chima-Okereke Mango Solutions

  2. Agenda

  3. Actuarial Survey Geographical Area UK Actuaries & CAS (Casualty Actuarial Society) Source Palisade ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf

  4. Main Areas Of Work UK Actuaries & CAS (Casualty Actuarial Society) Source Palisade 2006 ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf

  5. Main area of work in which software is used UK Actuaries & CAS (Casualty Actuarial Society) Source Palisade ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf

  6. Percentage of respondents using each package UK Actuaries & CAS (Casualty Actuarial Society) Source Palisade ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf

  7. Use of Statistical Packages Percentage of statistical package users using individual packages UK Actuaries & CAS (Casualty Actuarial Society) Source Palisade ( @Risk ): http://www.palisade.com/downloads/pdf/Pryor.pdf

  8. R is the programminglanguage of statistics Spreadsheets are unstructured computer programs: The Risks Of Using Spreadsheets for Statistical Analysis (IBM White Paper): http://public.dhe.ibm.com/common/ssi/ecm/en/imw14297usen/IMW14297USEN.PDF

  9. Excel

  10. What is R?

  11. Useful R Features

  12. Current Actuarial R Packages http://cran.r-project.org/web/packages/

  13. Functional Programming

  14. {plyr} Author: Hadley Wickham

  15. Example Data Data Source (Simulated): Modern Actuarial Risk Theory Using R: Kaas, Goovaerts, Dhaene, and Denuit.

  16. require(RODBC) doMyAnalysis <- function(myYear = 2001){ sqlString <- paste("SELECT * FROM policyClaims WHERE Year='",myYear,"'", sep = "") myData <- sqlQuery(channel = odbcConnect(dsn = "InsuranceData"), query = sqlString) odbcCloseAll() myGlm <- glm(noclaims ~ age + bonusmalus + region + mileage, data = myData, offset = log(exposure), family = poisson(link = "log")) myCoeffs <- summary(myGlm)$coeff theNames <- colnames(myCoeffs) myCoeffs <- data.frame(myCoeffs) myCoeffs <- data.frame(rownames(myCoeffs), myYear, myCoeffs) colnames(myCoeffs) <- c("Coeff", "Year", theNames) print(myYear) return(myCoeffs[1,]) } analysisOutPut <- lapply(2001:2010, doMyAnalysis) analysisOutPut <- do.call(rbind, analysisOutPut) rownames(analysisOutPut) <- 1:nrow(analysisOutPut) Dynamic SQL Query Example

  17. Dynamics SQL Query Analysis Combination Example

  18. myFun<- function(x){ hist(x$GrossIncurred, col = "blue", xlab = "GIC", main = paste("Histogram of GIC for bonus malus \n group ", x$BonusMalus[1], " and year ", x$Year[1], sep = "")) } pdf(file = paste(myFolder, "myPlots.pdf", sep = ""), width = 7, height = 7) by(policyTable, list("Year" = policyTable$Year, "BonusMalus" = policyTable$BonusMalus), FUN = myFun) dev.off() Plotting Analysis C:\Users\cchima-okereke\Documents\R\RScripts\ActuarialPricing\tmp\myPlots.pdf

  19. Plotting Analysis

  20. GUI In R (claimsExploreR)

  21. GUI In R (claimsExploreR)

  22. GUI In R (claimsExploreR)

  23. GLM Models in Pricing

  24. Variable SelectionCriteria

  25. Automation Algoritms

  26. Actuarial Pricing in R

  27. Automated pricing Process Structure in R

  28. Automated Actuarial Pricing

  29. Outputting Results

  30. Example Process

  31. Example Process

  32. Example Process

  33. Effects package effects package from John Fox: http://www.jstatsoft.org/v08/i15/paper

  34. Example Process

  35. Example Process:Final Model

  36. Final Charts

  37. Final Model

  38. Potential Scheme for analytical process

  39. Advantages ofR for GLM Analysis

  40. Challenges & Opportunities

More Related