1 / 19

Kapitel 4:Die Chomsky Hierarchie

Kapitel 4:Die Chomsky Hierarchie. Sprachen, Grammatiken, Automaten Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : brezany@par.univie.ac.at Sprechstunde: Dienstag, 11.30-12.30.

zoie
Télécharger la présentation

Kapitel 4:Die Chomsky Hierarchie

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kapitel 4:Die Chomsky Hierarchie Sprachen, Grammatiken, Automaten Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : brezany@par.univie.ac.at Sprechstunde: Dienstag, 11.30-12.30

  2. Kapitel 4: Die Chomsky Hierarchie Sei  ein beliebiges Alphabet. Eine Sprache haben wir als beliebige Teilmenge L * definiert. Wie lassen sich nun formale Sprachen präzise definieren? - Vier Methoden sind denkbar: 1. Auflistung/Aufzählung aller Sprachelemente - Die explizite Auflistung aller Sprachelemente ist nur für endliche Sprachen (mit relativ wenigen Elementen) möglich und daher für die meisten in der Praxis interessanten Sprachen irrelevant. - Die Aufzählung aller Sprachelemente basiert auf der Benutzung einer berechenbaren Funktion, deren Wertebereich gleich L ist. Bemerkung: Eine Funktion, die sich durch ein Programm realisieren läßt, heißt berechenbar.

  3. 2. Spezifikation eines formalen Ausdrucks Ein Beispiel für diese Methode sind reguläre Ausdrücke, die beliebige reguläre Sprachen beschreiben können. Zum Beispiel kann man die Menge der Bezeichner einer Programmiersprache durch L = B(B+Z)* darstellen, wenn B die Menge der Buchstaben und Z die Menge der Ziffern repräsentiert. Diese Methode hat allerdings begrenzte Mächtigkeit und ist nicht allgemein auf Sprachklassen mit höherer Mächtigkeit anwendbar. 3. Grammatiken Grammatiken lassen sich zur (rekursiven) Erzeugung der Sätze einer Sprache benutzen. 4. Automaten Automaten lassen sich zur Erkennung der Sätze einer Sprache verwenden.

  4. Die beiden zuletzt genannten Methoden haben für die Praxis die größte Bedeutung. Die Chomsky Hierarchie (nach Noam Chomsky) legt eine Hierarchie von vier Sprachklassen - Chomsky-Typ 0 bis Chomsky-Typ 3 - fest und formalisiert die Beziehung der zugehörigen Grammatik- und Automatenklassen.

  5. Erzeugung von Sprachen Die Erzeugung einer Sprache wird durch eine Grammatik spezifiziert. Grammatiken lassen sich als spezielle Semi-Thue Systeme auffassen: Es wird ein Verfahren angegeben, das aus einem Axiom (Startsymbol) und einer Menge von Regeln (Produktionen) systematisch alle Sätze einer Sprache generiert. Semi-Thue-Systeme (STS) - Ein STS ist eine nichtleere, endliche Relation R  E* x E* auf dem Alphabet E. - Die Tupel der Relation nennt man Regeln oder Produktionen. - Es werden Wörtern Zeichenketten durch andere Zeichenketten ersetzt. Beispiel für ein STS: E = {a,b,c,d,e}, R  E* x E = { (ab, ad), (dc, ee), (e, b), (ad, ae), (eb, b), (abc, e) } oder in Regelschreibweise: ab  ad dc  ee e  b ad  ae eb  b abc  e Erzeugung und Erkennung von Sprachen

  6. Beispiel für ein STS (Fortsetzung): Sei gegeben v = abc, w = aeb, so kann gezeigt werden, dass sich mit Hilfe des oben angegebenen Semi-Thue-Systems w aus v ableiten läßt. v = abc adc  aee aeb = w also gilt: v (*) w Für Semi-Thue-Systeme hat sich gezeigt, dass es kein allgemeines Verfahren gibt, mit dem man für beliebige Wortpaare v und w entscheiden kann, ob v (*) w gilt oder nicht. Daher wurden von einem amerikanischen Linquisten Noam Chomsky Modifikationen an den allgemeinen Semi-Thue-Systemen vorgenommen, durch die man Sprachkla- ssen erhält, die entscheidbar sind.

  7. Erkennung von Sprachen Sei L  *. Wir definieren zwei Typen von Erkennungsverfahren. - Entscheidbarkeit Es wird ein Verfahren spezifiziert, das für jedes Wort w  * entscheidet, ob w  Loder nicht w  L. - Semi-Entscheidbarkeit Es wird ein Verfahren spezifiert, das für jedes Wort w  * entscheidet, ob w  L.

  8. JA! I hat die Eigenschaft P „Hat die Eigenschaft P!“ falls I die Eigenschaft P hat. algorithmischer Test auf die problem-spezifische Eigenschaft P algorithmischer Test auf die problem-spezifische Eigenschaft P Instanz I Instanz I NEIN! I hat die Eigenschaft P nicht. Ist nicht definiert (z.B. hält nicht an), falls die Eigenschaft P nicht hat. Entscheidbarkeit eines Problems  Semi-Entscheidbarkeit eines Problems 

  9. Definition: Eine Typ-0 Grammatik ist ein Quadrupel G = ( N, , P, S ) wobei N,  und S die gleiche Bedeutung wie bei KFG haben und wir das Gesamtalphabet ebenfalls mit  bezeichnen. Für die Menge der Regeln, P, gilt: P  *N* x *, endlich  Regeln einer Typ-0 Grammatik sind also von der Form   , wobei und  Worte über dem Gesamtalphabet sind, mit der zusätzlichen Bedingung, dass  mindestens ein Nichtterminalzeichen enthält. Wie bei KFG lassen sich Regeln als Vorschriften für Textersetzungen in Worten aus *interpretieren, wobei allerdings Teilworte (die als linke Seite einer Regel auftreten) und nicht nur (wie bei KFG) einzelne Nichttermi- nalsymbole ersetzt werden können. Typ-0 Grammatiken

  10. Auf dieser Grundlage läßt sich wie bei KFG auf der Basis von P eine Ableitungsrelation  in * definieren und in völlig analoger Weise die von der Grammatik erzeugte Sprache, L(G), definieren. Eine Sprache, die von einer Typ-0 Grammatik erzeugt wird, heißt Typ-0 Sprache.

  11. Beispiel: Eine Typ-0 Grammatik, die { ai | i ist eine positive Potenz von 2 } erzeugt, ist im folgenden gegeben: 1) S  ACaB 5) aD  Da 2) Ca  aaC 6) AD  AC 3) CB  DB 7) aE  Ea 4) CB  E 8) AE   A und B dienen als linke und rechte Markierungen des Endes der Satzformen; C ist eine Markierung, die durch aus a bestehenden Zeichenketten zwischen dem A und B läuft und dabei deren Anzahl durch Produktion (2) verdoppelt. S 1 ACaB 2 AaaCB 4 AaaE 7 AaEa 7 AEaa 8 aa oder S 1 ACaB 2 AaaCB 3 AaaDB 5 AaDaB 5 ADaaB 6 ACaaB  ...

  12. Kontextsensitive (Typ-1) Grammatiken Definition: Eine Typ-0 Grammatik heißt kontextsensitiv (KSG) oder Typ-1 Grammatik, falls jede Regel in P eine der folgenden beiden Formen besitzt: Entweder 1B2  12 wobei B  N, 1, 2  * und   + oder S   und S tritt nicht auf der rechten Seite von Regeln auf. 

  13. Beispiel – Kontextsensitive Sprache Die Sprache L = {anbncn | n>0} ist kontextsensitiv. P: S  abc S  aXbc Xb  bX Xc  Ybcc bY  Yb aY  aa aY  aaX G = ({S, X, Y}, {a, b, c}, P, S)

  14. Beispiel: Kontextfreie Grammatik: G = ( {S}, {0, 1}, P, S ) P = { S  0S1, S  } L(G) = { 0n1n | n  1 } Aufgabe: Was für eine Sprache wird durch die folgende Typ-0 Grammatik generiert: S  S1B S1  aS1b bB  bbbB aS1b  aa B  

  15. Zusammenfassung: Die Grammatiken der Chomsky Hierarchie • Eine Chomsky Grammatik hat die Form G = (N, , P, S), wo N und  die • Alphabete der Nichtterminal- bzw Terminalsymbole darstellen, P die • Regelmenge ist und S  N das ausgezeichnete Symbol darstellt. Die • einzelnen Grammatikklassen werden durch die Form ihrer Regeln • unterschieden: • Typ-0 (unbeschränkte):   mit   *N* und   *. • Typ-1 (kontextsensitive):1B2  12, mit B  N, 1, 2  * • und   + • oder S   und S tritt nicht auf der rechten Seite von Regeln auf. • Typ-2 (kontextfrei):A   mit A  N,  * • Typ-3 (reguläre): • - rechtslinear:A  x oder A  xB, mit A, B  N und x *. • - linkslinear:A  x oder A  Bx, mit A, B  N und x *.

  16. Den vier Grammatik- und Sprachklassen der Chomsky Hierarchie entsprechen vier Klassen von Automaten. Die Automaten des Typs i (0  i  3) erkennen genau die von Chomsky Typ-i Grammatiken generierten Sprachen. Diese Automatenklassen werden wie folgt bezeichnet: Typ-0: Turingmaschinen Typ-1: Linear beschränkte Automaten Typ-2: Kellerautomaten (Stackautomaten) Typ-3: Endliche Automaten Chomsky Hierarchie: Sprachklassen,Automaten, und Hierarchiesatz

  17. Hierarchiesatz: Bezeichne Li, 0  i  3, die Familie der Chomsky Typ-i Sprachen. Dann gilt L3 L2 L1 L0 wobei alle Inklusionen echte Teilmengenbeziehungen repräsentieren. 

  18. Die Grammatiken bilden keine Hierarchie: Eine kontextfreie Grammatik braucht nicht kontextsensitiv zu sein. Jedoch läßt sich für jede kontextfreie Grammatik eine dazu äquivalente kontextsensitive Grammatik konstruieren. Die Sprache { anbn | n  1 } ist kontextfrei, aber nicht regulär. Die Sprache { anbncn | n  1 } ist kontextsensitiv, aber nicht kontextfrei. Aufgabe: Finden Sie eine kontextsensitive Grammatik, die L = { anbncn | n  1 } generiert. Bemerkungen zur Hierarchieeigenschaft

  19. Definition: Zwei Typ-0 Grammatiken G und G´ heißen äquivalent genau dann, wenn L(G) = L(G´). Definition: Gegeben sei eine Sprache L*. Wir betrachten das folgende Problem: Gibt es ein Verfahren, das für ein beliebiges w * entscheidet, ob w  L oder nicht w  L? Man nennt dies das Wortproblem für L. Bemerkung: Für Typ-0 Sprachen ist das Wortproblem im allgemeinen nicht entscheidbar. Für Typ-i Sprachen mit i  1 ist das Wortproblem entscheidbar. Äquivalenz und Wortproblem

More Related