1 / 18

Blooming Trees for Minimal Perfect Hashing

Blooming Trees for Minimal Perfect Hashing. Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher: GLOBECOM 2008 Presenter: Yu-Ping Chiang Date: 2009/07/21. Outline. Related work Huffman spectral bloom filter Blooming tree

zudora
Télécharger la présentation

Blooming Trees for Minimal Perfect Hashing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Blooming Trees for Minimal Perfect Hashing Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher: GLOBECOM 2008 Presenter: Yu-Ping Chiang Date: 2009/07/21

  2. Outline • Related work • Huffman spectral bloom filter • Blooming tree • Minimal Perfect Hash Function • Using naïve blooming tree • Using optimized blooming tree and HSBF • Experimental result

  3. CBF 0 0 0 0 1 0 0 1 0 0 3 0 0 δ”1s”, and a trailing 0 1110 HSBF 10 10 Related work – Huffman Spectral Bloom Filter • Using Huffman code encode Counting Bloom Filter (CBF) • Encode value δ with (δ+1) bits

  4. item HASH FUNCTION 2 items 3 items 1 item Bit string 0 1 1 0 1 0 0 1 B0 3 bits 1 bit 1 bit 0 1 0 0 1 0 0 1 1 0 1 0 B1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 B2 1 2 1 1 1 1 B3 Related work – blooming tree index index index

  5. Outline • Related work • Huffman spectral bloom filter • Blooming tree • Minimal Perfect Hash Function • Using naïve blooming tree • Using optimized blooming tree and HSBF • Experimental result

  6. item HASH FUNCTION 2 items 1 item 1 item Bit string 0 1 1 0 0 0 0 1 B0 3 bits 1 bit 1 bit index 0 1 0 B1 1 0 0 1 1 0 index 0 0 0 1 index 1 0 1 0 1 1 B2 Popcount is final hash number B3 1 1 1 1 MPHF – using NBT

  7. Step1: Step2: final hash number = popcount 2 items 1 item 1 item item1 item1 00 001 00 item2 item2 0 1 1 0 0 0 0 1 010 10 01 hash popcount B0 item3 item3 111 00 10 0 1 0 item4 item4 111 01 11 B1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 B2 B3 1 1 1 1 item1 item2 item3 item4 MPHF – using NBT

  8. 2 items 1 item 1 item 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 B0 0 1 0 B1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 B2 MPHF – using OBT and HSBT 2 items 1 item 1 item 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 NBT OBT

  9. 110 0 0 0 0 2 items 2 items 1 item 1 item 1 item 1 item 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 10 10 MPHF – using OBT and HSBT OBT OBT with HSBF

  10. 110 0 0 0 0 2 items 1 item 1 item 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 10 10 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 001 000 item2 010 100 hash item3 111 000 item4 111 010 … item1 00 item2 01 Zero blocks item3 10 item4 11 …

  11. 110 0 0 0 0 2 items 1 item 1 item 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 Lookup table : Start addr. Prev. elements Prev. “10”s Y1 Y2 2 0 2 0 10 10 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks Y1 Y2 item1 001 000 item2 010 100 hash item3 111 000 item4 111 010 … item1 00 item2 01 Zero blocks item3 10 item4 11 …

  12. 110 0 0 0 0 2 items 1 item 1 item 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 Lookup table : Start addr. Prev. elements Prev. “10”s Y1 Y2 2 0 0 2 10 10 0 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks Y1 Y2 item1 001 000 item2 010 100 hash item3 111 000 item4 111 010 … item1 00 item2 01 Zero blocks item3 10 item4 11 …

  13. Outline • Related work • Huffman spectral bloom filter • Blooming tree • Minimal Perfect Hash Function • Using naïve blooming tree • Using optimized blooming tree and HSBF • Experimental result

  14. Experimental result • Our • Intel 2.4Ghz Pentium 4 Core 2 Duo processor, 4GB RAM, Linux OS 2.6

  15. Experimental result • BPZ • 3.2 Ghz XEON, 1G RAM, Linux 2.6 • BL • Pentium 4

  16. Bloom Filter U U S item2 item1 item3 item1 item3 There can be at most three items each present with three bits in set S. S can be present as 001 110 000 If present item in U as xxx Item1 can be 001 Item2 can be 010 Item3 can be 110

  17. Bloom Filter U U S item2 item1 item1 item3 item3 S can be present as 101 Assume hash function H(x) : H(item1) = 0 H(item2) = 1 H(item3) = 2 Ucan be present in three bits, No.H(itemi) bit present i

More Related