1 / 34

Chapter 7 Steady-State Errors

Chapter 7 Steady-State Errors. 穩態誤差. 7.1 Introduction. 控制系統設計 3 規格 : Transient response 暫態反應 ( T p , T s , T r , %OS ) Stability 穩定度 Steady-state errors 穩態誤差 , e( ∞ ) System discussed: stable system only. 討論 3 類系統的 控制誤差 位置 控制 ; 等速度 控制 ; 等加速度 控制 。.

elia
Télécharger la présentation

Chapter 7 Steady-State Errors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7 Steady-State Errors 穩態誤差

  2. 7.1 Introduction • 控制系統設計 3規格: Transient response 暫態反應 (Tp , Ts , Tr , %OS) Stability 穩定度 Steady-state errors 穩態誤差, e(∞) • System discussed: stable system only.

  3. 討論3類系統的控制誤差位置控制;等速度控制;等加速度控制。討論3類系統的控制誤差位置控制;等速度控制;等加速度控制。 Figure 7.1Test inputs for steady-state error analysis and design vary with target type

  4. 3 Inputs (即3種指令) : Step input(位置) ;Ramp input(等速度) ;Parabolic input(等加速度) 位置控制指令 等速度控制指令 等加速度控制指令 Table 7.1 Test waveforms for evaluating steady-state errors of position control systems

  5. Figure 7.2Steady-state errore(∞)a. step input;output1: e(∞)=0output2: e(∞)=constant b. ramp inputoutput1: e(∞)=0output2: e(∞)= constantoutput3: e(∞)= ∞ unstable

  6. Error 定義:e(t) = Input (t) - Output (t) E(s) = R(s) – C(s) • Steady-state error 定義: e(∞) = Input (∞) - Output (∞) at time domain e(∞) = lims→0 s E(s) (by final value theorem)

  7. Figure 7.4 e(∞) 由system configuration and input決定:a.finite steady-state error for a step input; Csteady-state = Kesteady-state K↑ esteady-state↓ esteady-state = 0 → impossible b.zero steady-state error for step input esteady-state = 0 (∵ 系統具積分器)

  8. 7.2 Steady-State Error for Unity Feedback Systems(case 1) 1/2 • E(s) = R(s) – C(s) where C (s) = G(s)E(s)→ E(s) = R(s)/(1 + G(s))註:e(∞) 由system configuration and input決定 G(s) R(s)

  9. 7.2 Steady-State Error for Unity Feedback Systems(case 1) 2/2 • E(s) = R(s) – C(s) where C (s) = G(s)E(s)→ E(s) = R(s)/(1 + G(s))→ e(∞) = lims→0 S E(s) or e(∞) = lims→0 S R(s)/(1 + G(s)) 註:Steady-State Error

  10. 7.2 Steady-State Error for Unity Feedback Systems(case 2) • E(s) = R(s) – C(s) where C (s) = T(s)R(s)→ E(s) = R(s) [1 -T(s)] → e(∞) = lims→0 S E(s) or e(∞) = lims→0 S R(s)[1 -T(s)] e(∞) 由system configuration and input決定

  11. Figure 7.8 Feedback control system for defining system type 定義 of System Type:n=0 Type 0 systemn=1 Type 1 systemn=2 Type 2 system

  12. ※ 求 esteady-state under 3 input signals 1/4 • For step inputR(s)=1/S e(∞) = lims→0 S R(s)/(1 + G(s)) ←公式 = lims→0 S (1/S)/(1 + G(s)) = lims→01/(1 + G(s)) = 1/(1 + lims→0G(s)) if wish e(∞) = 0→ then lims→0 G(s) = ∞

  13. ※ 求 esteady-state under 3 input signals 2/4 • For step input (續) e(∞) = 1/(1 + lims→0G(s)) if wishe(∞) = 0→ thenlims→0 G(s) = ∞ lims→0 G(s) = ∞if n≧1 for • n≧1 stands for 1 integrator in the forward path i.e. system type ≧1to derive e(∞) = 0

  14. ※ 求 esteady-state under 3 input signals 3/4 • For ramp inputR(s)=1/S2 e(∞) = lims→0 S R(s)/(1 + G(s)) = lims→0 S (1/S2)/(1 + G(s)) = lims→0 1/S(1 + G(s)) = 1/lims→0SG(s) if wishe(∞) = 0→ thenlims→0SG(s) = ∞ lims→0 sG(s) = ∞if n≧2 for • n≧2 stands for 2 integrators in the forward path i.e. system type ≧2 to derive e(∞) = 0

  15. ※ 求 esteady-state under 3 input signals 4/4 • For parabolic inputR(s)=1/S3 e(∞) = lims→0 S R(s)/(1 + G(s)) = lims→0 S (1/S3)/(1 + G(s)) = lims→01/ S2(1 + G(s)) = 1/lims→0 s2G(s) if wishe(∞) = 0→ thenlims→0 s2G(s)= ∞ lims→0 s2G(s) = ∞if n≧3 for • n≧3 stands for 3 integrators in the forward path i.e. system type ≧3to derive e(∞) = 0

  16. 公式彙總 指令不同 求 esteady-state 公式不同 • For step inputR(s)=1/S e(∞) = 1/(1 + lims→0G(s)) • For ramp inputR(s)=1/S2 e(∞) = 1/ lims→0SG(s) • For parabolic inputR(s)=1/S3 e(∞) = 1/lims→0 s2G(s)

  17. Example 7.2 不同指令下 求 esteady-state Figure 7.5 Feedback control system for system with no integrator type 0 系統 R(s) = 5u(t) = 5/S e(∞) = 5/(1 + lims→0G(s)) = 5/21 R(s) = 5tu(t) = 5/S2 e(∞) = 5/ lims→0SG(s) = 1/0 = ∞ R(s) = 5t2u(t) = 10/S3 e(∞) = 5/ lims→0 S2G(s) = 1/0 = ∞type 0系統 只能執行位置控制 產生有限誤差;無法執行速度及加速度控制

  18. Example 7.3Figure 7.6 Feedback control system for system with no one integrator type1 系統 R(s) = 5u(t) = 5/S e(∞) = 5/(1 + lims→0G(s)) = 0 R(s)= 5tu(t) = 5/S2 e(∞) = 5/ lims→0SG(s) = 1/20 = finite R(s)= 5t2u(t) = 10/S3 e(∞) = 10/ lims→0 S2G(s) = 1/0 = ∞type 1系統 執行位置控制 無誤差產生;執行速度控制 產生有限誤差;無法執行加速度控制H.W.: Skill-Assessment Exercise 7.1

  19. 7.3 Static Error Constants and System Type • 定義: Static Error Constants Kp Kv Ka For step input R(s) = 1/s e(∞) = 1/(1 + lims→0 G(s)) = 1/1+Kp Kp = lims→0 G(s) position error constant For ramp input R(s) =1/s2 e(∞) = 1/ lims→0SG(s) = 1/Kv Kv = lims→0 SG(s) velocity error constant For parabolic input R(s) = 1/s3 e(∞) = 1/ lims→0 s2G(s) = 1/Ka Ka = lims→0 S2G(s) acceleration error constant

  20. Example 7.4 利用Static Error Constants 求解Figure 7.7 Feedback control systems 求3系統之steady-state error? 1/3 Type 0 systemFor step input: R(s) = 1/s Kp = lims→0G(s)= 5.208e(∞) = 1/ /(1+Kp)= 0.161For ramp input: R(s) =1/s2 Kv = lims→0 sG(s) = 0 e(∞) = 1/Kv = ∞For parabolic input: R(s) = 1/s3 Ka = lims→0s2G(s)=0e(∞) = 1/Ka = ∞

  21. Example 7.4 Figure 7.7 Feedback control systems 求3系統之steady-state error? 2/3 (b) Type 1 systemFor step input: R(s) = 1/s Kp = lims→0G(s)= ?/0 = ∞ e(∞) = 1/(1+Kp) = 0For ramp input: R(s) =1/s2 Kv = lims→0 sG(s) = 30000/960 =31.25 e(∞) = 1/Kv = 0.032For parabolic input: R(s) = 1/s3 Ka = lims→0s2G(s)=0*?=0 e(∞) = 1/Ka = ∞

  22. Example 7.4 Figure 7.7 Feedback control systems 求3系統之steady-state error? 3/3 (c) Type 2 systemFor step input: R(s) = 1/s Kp = lims→0 G(s)= ?/0 = ∞ e(∞) = 1/ (1+Kp)= 0For ramp input: R(s) =1/s2 Kv = lims→0 sG(s) = ?/0 = ∞ e(∞) = 1/Kv = 0For parabolic input: R(s) = 1/s3 Ka = lims→0 s2G(s) = 875 e(∞) = 1/Ka = 0.00114

  23. Table 7.2Relationships between input, system type, static error constants, and steady-state errors Static Error Constants: Kp Kv Ka 決定系統之 e(∞) ; 其可為steady-state error 之規格 H.W.: Skill-Assessment Exercise 7.2

  24. 7.4 Steady-State Error Specifications • Example 7.5 Given Kv=1000 → draw ?? conclusions 1. Stable system 2. Ramp input 3. Type 1 system

  25. Example 7.6 Find K=? → e(∞) = 10% • Type 1 system (已知) • 有限的e(∞)→ Ramp input (已知) • e(∞) = 1/ Kv = 0.1 → Kv = 10 • Kv = lims→0 SG(s) = k*5 / 6*7*8 = 10 → k = 672 自修Skill-Assessment Exercise 7.3

  26. 7.5 Steady-State Error for Disturbances 1/3 Figure 7.11 Feedback control system showing disturbance • 2 inputs R(s) & D(s) C(s) =﹝E(s)G1(s) +D(s) ﹞G2(s) = E(s)G1(s)G2(s) +D(s)G2(s) E(s) = R(s) – C(s) →R(s) –E(s) = E(s)G1(s)G2(s) +D(s)G2(s) E(s)G1(s)G2(s) + E(s) = R(s) – D(s)G2(s) E(s)(1+G1(s)G2(s)) = R(s) – D(s)G2(s)

  27. 7.5 Steady-State Error for Disturbances 2/3 E(s)(1+G1(s)G2(s)) = R(s) – D(s)G2(s)

  28. 7.5 Steady-State Error for Disturbances 3/3 • eD(∞)↓ (分母變大) if DC gain of G1(s)↑ or DC gain of G2(s)↓ DC gain of G1(s)

  29. Example 7.7 Fig. 7.13 如下自修 D(s) = step disturbance Find eD(∞)= ? • H.W. : Skill-Assessment Exercise 7.4

  30. Figure 7.12Figure 7.11 system rearranged to show disturbance as input and error as output, with R(s) = 0 -C(s) = E(s)

  31. 7.6 Steady-State Error for Nonunity Feedback Systems

  32. 7.7 Sensitivity • Defination Examples: 7.10 7.11 7.12 H.W. : Skill-Assessment Exercise 7.6

  33. Example 7.11 Figure 7.19 Find Se:a = ? Se:k =? R(s) = Ramp input = 1/s2 → e(∞) = 1/kv = 1/(k/a) = a/k Se:a= ﹝a/(a/k)﹞﹝δ(a/k)/δa﹞= 1 Se:k = ﹝k/(a/k)﹞﹝δ(a/k)/δk﹞= -1

More Related