1 / 39

Study of low temperature poly silicon for solar cells

Study of low temperature poly silicon for solar cells. Advisor: Dr. Hon Kuan Student: Tsung-Yu Li Date : 98/04/22. Outline. Introduction Experimental Results and discussion Conclusions References. Introduction. 這兩篇報告是 利用多晶矽薄膜作為晶種並以兩階段退火,製備低溫多晶矽薄膜於太陽能電池,討論其微結構與電性之研究。

enrico
Télécharger la présentation

Study of low temperature poly silicon for solar cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of low temperature poly silicon for solar cells Advisor: Dr.Hon Kuan Student: Tsung-Yu Li Date:98/04/22

  2. Outline • Introduction • Experimental • Results and discussion • Conclusions • References

  3. Introduction • 這兩篇報告是利用多晶矽薄膜作為晶種並以兩階段退火,製備低溫多晶矽薄膜於太陽能電池,討論其微結構與電性之研究。 • 此技術的特點在於所成長的多晶矽晶粒的橫向長度大於縱向的寬度。第一階段以500°C 持溫1 小時,探討鋁金屬誘發再結晶。 • 第二階段以不同退火溫度與時間分析鋁金屬誘發多晶矽之影響,完成之試片以X 光繞射分析儀(XRD)進行結晶性分析,確認Si 的結晶面存在與否,並以拉曼光譜分析相互印證,以場發射式電子顯微鏡(FE-SEM)觀察其表面結構與截面結構。 • 以霍爾量測分析載子移動率,載子濃度,電阻率。最後並測試電流-電壓的特性已確定其暗電流的機制。實驗結果證實,經由兩階段退火的製程確實能有效降低多晶矽膜之製程溫度並獲得較佳的微結構組織。

  4. Experimental • 實驗流程 • PART I 先蝕刻Al • PART II 沉積完非晶矽再蝕刻Al

  5. Results and discussion (a) SiO2 film (200nm) (b) Al film(250nm) (c) a-Si film(250nm) 未退火表面的SEM圖

  6. Results and discussion 未退火側面SEM截圖

  7. Results and discussion 未退火XRD分析圖 未退火Raman分析圖

  8. Results and discussion first step annealing process at 500°C for 1 hour,without Al etching off

  9. Results and discussion first step annealing process at 500°C for 1 hour ,and Al etching off

  10. Results and discussion XRD spectra of poly-Si thin film annealed at 500°C for 1 hour and Al etched off

  11. Results and discussion XRD spectra of Part I specimens annealed at (a) 450 °C, and (b)500 °C and 5 different durations and Al etched off

  12. Results and discussion XRD peak intensity plot versus different annealing duration of Part I specimens annealed at 450 °C, and 500 °C

  13. Results and discussion XRD FWHM plot versus different annealing duration of Part I specimens annealed at 450 °C, and 500 °C

  14. Results and discussion Crystal size of polycrystalline silicon thin film versus different annealing duration of Part I specimens annealed at 450 °C, and 500 °C D:晶粒大小 K=1 常數 λ:X 光波長 △(2θ):半高峰寬 θ:繞射角

  15. Results and discussion XRD spectra of Part II specimens annealed at (a) 450 °C, and (b)500 °C and 5 different durations and Al etched off

  16. Results and discussion XRD peak intensity plot versus different annealing duration of Part II specimens annealed at 450 °C, and 500 °C

  17. Results and discussion XRD FWHM plot versus different annealing duration of Part II specimens annealed at 450 °C, and 500 °C

  18. Results and discussion Crystal size of polycrystalline silicon thin film versus different annealing duration of Part II specimens annealed at 450 °C, and 500 °C

  19. Results and discussion Raman spectra of single crystalline silicon 鋁誘發多晶矽主要的結晶強度在結晶面(111)方向, 由Widenborg[37]的研究中指出的單晶矽之Raman 波數是在520 cm-1。 另且由JIN [38]等人研究中指 出Si-Si 鍵結在Raman 波數中499 cm-1時即會產生峰值,且知是屬於多 晶矽。

  20. Results and discussion Raman spectra of part I specimens under 5 different annealing durations and annealing duration of (a) 450°C, and (b) 500 °C, and Al etched off

  21. Results and discussion Raman spectra of part II specimens under 5 different annealing durations and annealing duration of (a) 450°C, and (b) 500 °C, and Al etched off

  22. Results and discussion SEM photos of part I specimens with the second step annealing process at 450°C for (a)15 ,(b)30, (c)60, (d)120, and (e)240 minutes.

  23. Results and discussion SEM photos of part I specimens with the second step annealing process at 500°C for (a)15 ,(b)30, (c)60, (d)120, and (e)240 minutes.

  24. Results and discussion part I specimens with the second step annealing process at 450°C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  25. Results and discussion part I specimens with the Second step annealing process at 500°C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  26. Results and discussion SEM photos of part II specimens with the second step annealing process at 450°C for (a)15 ,(b)30, (c)60, (d)120, and (e)240 minutes.

  27. Results and discussion SEM photos of part II specimens with the second step annealing process at 500°C for (a)15 ,(b)30, (c)60, (d)120, and (e)240 minutes.

  28. Results and discussion part II specimens with the second step annealing process at 450°C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  29. Results and discussion part II specimens with the second step annealing process at 500°C for (a)15, (b)30, (c)60, (d)120, and (e)240 minutes.

  30. Results and discussion Leakage current variation of part I specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 °C and (b) 500°C

  31. Results and discussion Leakage current variation of part II specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 °C and (b) 500°C

  32. Results and discussion Resistivity variations of part I and part II specimens versus bias voltage under 5 different annealing durations and annealing temperature of (a) 450 °C and (b) 500°C

  33. Results and discussion Mobility of poly-silicon thin film of part I and part II specimens as a function of annealing duration

  34. Results and discussion Carrier concentration of poly-silicon thin film of part I and part II specimens as a function of annealing duration

  35. Conclusions • 以退火溫度450 °C 持溫15 分鐘進行第二階段退火,成功研製膜厚1μm 的多晶矽薄膜且橫向晶粒大小約為3~5 μm。 • 在第二階段退火時間15 分鐘以上時,皆能誘發出多晶矽結晶,且退火時間60分鐘後峰值強度達穩定,研判其晶粒誘發完全。 • 第一階段退火後未經鋁蝕刻且馬上沉積a-Si(1μm)做第二次退火再蝕刻鋁時,會有殘留的鋁在晶界上無法徹底清除。 • 第一階段退火後經鋁蝕刻之多晶矽試片的漏電流集中在10-7 A/cm2處,電阻率落在103~106 Ω-cm 之間,其中500 °C 持溫30 分退火之試件具有最高的載子移動率,其值為23.4 cm2/V.s;第一階段退火後未經鋁蝕刻之試片之多晶矽之漏電流集中在10-9 A/cm2 處,電阻率落在108 Ω-cm之間。

  36. References • [1] A. Wohllebe, R. Carius, L. Houben, A. Klatt, P. Hapke, J. Klomfaß, H. Wagner, “Crystallization of amorphous Si films for thin film silicon solar cells”, Journal of Non-Crystalline Solids, 227-230, (1998), pp.925-929. • [2] 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書公司,2005.9 初版四刷。 • [3] http://www.e-tonsolar.com/edu.htm#1 • [4] H. Kim, G. Lee, D. Kim, S. H. Lee, “A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization”, Current Applied Physics 2 (2002) pp.129-133 • [5] G. R. Hu, Y. S. Wu, C. W. Chao and H. C. Shih, “Growth Mechanism of Laser Annealing of Nickel-Induced Lateral Crystallized Silicon Films”, Jan. J. Appl. Phys., Vol. 45, No. 1A, 2006, pp.21-27 • [6] O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, Senior Member, “Polycrystalline Silicon Thin Films on Glass by Aluminum-Induced Crystallization”, IEEE transactions on electron devices, VOL. 46, NO. 10, 1999.10 • [7] J.L. Hwang, F.Y. Yeh, Application and Lamination of Photovoltaic Module, 工業材料雜誌, 230期, 2006.2 • [8] W. D. Callister, “Meterials Science and Engineering”, John Wiley & Sons, Inc., Second Edition • [9] 施敏 原著,“半導體元件物理與製作技術”,國立交通大學出版社,2002.9 初版 103 • [10] W. Shockley, “Electrons and Holes in semiconductors”, Litton Edacation Publishing Co., Inc., 1950. • [11] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation“, IEEE Electron Devices Lett., Vol. 12,(1991), pp.181. • [12] 陳志強、張忠恕,低溫複晶矽元件與陣列之可靠度,工業材料雜誌,196期,2003.4。 • [13] T. Ohzone, M. Fukumoto, G. Fuse, A. Shinohara, S. Odanaka, and masaru sasago, “ion-implanted Thin Polycrystalline-Silicon High-Value Resistors for High-Density Poly-Load Static RAM Applications “, IEEE Trans. Electron Devices, Vol. 32, (1985), pp.1749. • [14] D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou, “High-performance thin-film transistors from optimized polycrystalline silicon films“, Appl. Phys. Lett. Vol. 50, (1987), pp.1894. • [15] K. Goshima, H. Toyoda, T. Kojima, M. Nishitani, M. Kitagawa, H. Yamazoe and H. Sugai, “Lower Temperature Deposition of Polycrystalline Silicon Films from a Modified Inductively Coupled Silane Plasma “Jan. J. Appl. Phys. Vol. 38, NO. 6A, (1999), pp.3655.

  37. References • [16] O. Ebil, R. Aparicio, S. Hazra, R. W. Birkmir, E. Sutterb, “Deposition and structural characterization of poly-Si thin films on Al coated glass substrates using hot-wire chemical vapor deposition”, Thin Solid Films 430(2003), pp.120-124. 104 • [17] D. D. Sala, S. Loreti, L. Fornarini, I. Menicucci, A. Santoni, P. D. Veneri, C. Privatoc, J. Lancockd, “Laser-assisted chemical vapor deposition of thick poly-Si layers for solar cells”, Thin Solid Films 403-404(2002), pp.302-306. • [18] 陳志強,LTPS 低溫複晶矽顯示器技術,全華科技圖書公司,2004.9 初版一刷。 • [19] M. S. Haque, H. A. Naseem, and W. D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures”, J. Appl. Phys., Vol. 75, No. 8, 15 April 1994. • [20] 莊達人,VLSI 製造技術,高立圖書有限公司,2003.7.20 五版二刷。 • [21] O. Nast, “Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon”, J. Appl. Phys. Vol. 88, No. 2, 15 July 2000. • [22] K. M. Lim, M. Y. Sung, “Low noise digital data driver circuit integrated poly-Si TFT-LCD”, Microelectronics Journal 30 (1999), pp.905-910. • [23] E. V. JelenkovicÂ, K. Y. Tonga, W. Y. Cheungb, I. H. Wilsonb, S. P. Wongb, M. C. Poon, “Low temperature doping of poly-SiGe films with boron by co-sputtering”, Thin Solid Films 368 (2000) 55-60. • [24] K. Naeli, Mat. Res. Soc. Symp. Proc. Vol. 664, (2001), A6. • [25] S. Nakahara, “Recent development in a TEM specimen preparation technique using FIB for semiconductor devices”, Surface and Coatings Technology 169-170 (2003), pp.721-727. • [26] J. K. Rath, “Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications”, Solar Energy Materials & Solar Cells (2003), pp.431-487. 105 • [27] 粘志成,製程條件對鋁誘發非晶矽薄膜結晶影響之研究,崑山科技大學機械系碩士論文,2005.7 • [28] 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚,工程材料科學,全華科技圖書公司,2000.12 二版九刷。 • [29] K. Nakamura, M. A. Nicolet, and J. W. Mayer, ”Interaction of Al layers with polycrystalline Si”, Journal of Applied Physics, Vol. 46, No. 11, Noverber 1975.

  38. References • [30] O. Nast, “Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon”, J. Appl. Phys. Vol. 88, No. 2, 15 July 2000. • [31] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and Stuart R. Wenham, ”Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, No. 22, 30 November 1998. • [32] M. S. Haque, H. A. Naseem, and W. D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorousdoped hydrogenated amorphous silicon at low temperatures”, J. Appl. Phys. 79 (10), 15 May 1996 • [33] O. Prache, “Active matrix molecular OLED microdisplays”, Displays 22 (2001), pp.49-56. • [34] W. S. Liao and S. C. Lee, “Interfacial interaction between Al-1%Si and phosphorus-doped hydrogenated amorphous Si alloy at low temperature”, J. Appl. Phys. 81 (12), 15 June 1997 • [35] E. Pihana, A. Slaouia, P. R. Cabarrocasb, A. Focsaa, “Polycrystalline silicon films by aluminium-induced crystallisation: growth process vs. silicon deposition method”, E. Pihan et al. / Thin Solid Films 451 – 452 (2004), pp.328-333 106 • [36] E. Pihan, A. Slaoui, A. Focsa, P. R. Cabarrocas, “Polycrystalline silicon films on ceramic substrates by aluminium-induced crystallisation process”, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003 Osaka, Japan • [37] P. I. Widenborg, A. G. Aberle, “Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates”, Journal of Crystal Growth 242 (2002), pp.270-282. • [38] Z. JIN, G. A. Bhat, M. Yeungh, H. S. Kwok and M. Wong, “Solid-Phase Reaction of Ni with Amorphous SiGe Thin Film on SiO2”, Jpn. J. Appl. Phys., Vol. 36 (1997), pp. L 1637-L 1640.

  39. THANKS        FOR           YOUR               ATTENTION

More Related