1 / 27

2000

25. ¡. 20. Mg C ha -1 yr -1. ¡. ¡. ¡. 15. ¡. ú. ¡. ¡. ¡. ¡. ú. ú. ¡. ú. ¡. ú. ¡. ¡. ¡. ¡. ú. ¡. ¡. 10. ¡. ¡. l. ú. l. ¡. ¡. ¡. ¡. ¡. ¡. l. ú. ¡. ¡. l. ú. ú. ú. ¡. ¡. ú. ú. ú. ¡. ú. ¡. ¡. ¡. ú. ú. l. ú. ú. ¡. ú. ú. ¡. ú. ú. ¡. ú.

quito
Télécharger la présentation

2000

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 25 ¡ 20 Mg C ha-1 yr -1 ¡ ¡ ¡ 15 ¡ ú ¡ ¡ ¡ ¡ ú ú ¡ ú ¡ ú ¡ ¡ ¡ ¡ ú ¡ ¡ 10 ¡ ¡ l ú l ¡ ¡ ¡ ¡ ¡ ¡ l ú ¡ ¡ l ú ú ú ¡ ¡ ú ú ú ¡ ú ¡ ¡ ¡ ú ú l ú ú ¡ ú ú ¡ ú ú ¡ ú ú ú 5 ú ú ¡ ú ú ú ú ú ú l ú ú ú ú ú ú ¡ ú ú ú ¡ ú ú ú ú ú ú ú ú 0 0 2000 4000 6000 8000 Mean Annual Precipitation (mm) Climate controls over NPP • At a global scale, NPP is strongly correlated with ppt and T • Water increases plant growth in drier ecosystems. Also increases decomposition and nutrient cycling. • In very wet ecosystems, ppt can limit NPP by decreasing light or nutrient availability

  2. Climate controls over NPP 25 ¡ 20 Mg C ha-1 yr -1 ¡ ¡ ¡ 15 ¡ ¡ ¡ ¡ ú ¡ ú ¡ ú ú ¡ ¡ ú ¡ ¡ ¡ 10 ¡ ¡ ú l l ¡ ¡ ¡ ¡ ¡ l ú ¡ ¡ l ú ú ú ú ¡ ¡ ú ú ¡ ¡ ¡ ¡ ú ú ú l ú ú ¡ ú ú ¡ 5 ú ú ú ú ú ¡ ú ú ú ú ú ú ú l ú ú ú ú ¡ ú ú ¡ ú ú 0 -15 -10 -5 0 5 10 15 20 25 30 Mean Annual Temperature (ºC) • Temperature is related to growing season length • Temperature stimulates decomposition and nutrient cycling.

  3. 25 ¡ 20 Mg C ha-1 yr -1 ¡ ¡ ¡ 15 ¡ ú ¡ ¡ ¡ ¡ ú ú ¡ ú ¡ ú ¡ ¡ ¡ ¡ ú ¡ ¡ 10 ¡ ¡ l ú l ¡ ¡ ¡ ¡ ¡ ¡ l ú ¡ ¡ l ú ú ú ¡ ¡ ú ú ú ¡ ú ¡ ¡ ¡ ú ú l ú ú ¡ ú ú ¡ ú ú ¡ ú ú ú 5 ú ú 25 ¡ ú ú ú ú ú ¡ ú l ú ú ú ú ú ú ¡ ú ú ú ¡ ú ú ú ú ú ú ú ú 0 20 0 2000 4000 6000 8000 Mean Annual Precipitation (mm) Mg C ha-1 yr -1 ¡ ¡ ¡ 15 ¡ ¡ ¡ ¡ ú ¡ ú ¡ ú ú ¡ ¡ ú ¡ ¡ ¡ 10 ¡ ¡ ú l l ¡ ¡ ¡ ¡ ¡ l ú ¡ ¡ l ú ú ú ú ¡ ¡ ú ú ¡ ¡ ¡ ¡ ú ú ú l ú ú ¡ ú ú ¡ 5 ú ú ú ú ú ¡ ú ú ú ú ú ú ú l ú ú ú ú ¡ ú ú ¡ ú ú 0 -15 -10 -5 0 5 10 15 20 25 30 Mean Annual Temperature (ºC) Climate controls over NPP In ecosystems where correlations suggest a strong climatic limitation of NPP, experiments and observations indicate that this is mediated primarily by climatic effects on belowground resources.

  4. Resource control • Proximate control over NPP is availability of resouces • Light, CO2,H2O, nutrients (N,P,K,Mg,Ca,…) • Many ecosystems increase NPP when N or P fertilizer is added. • Some ecosystems increase NPP when CO2 or H2O is added. • Where T has been manipulated, NPP doesn’t respond directly.

  5. Vitousek and Farrington 1997

  6. Variation in NPP

  7. Global Potential Net Primary Productivity Mg C ha -1 yr-1

  8. Biome Differences in NPP (Terrestrial) • Length of the growing season is the major factor that explains biome differences in NPP • Differences in leaf area account for most of the variation in biome NPP within a growing season • Leaf area, in turn, is determined by soil resources, climate, and time since disturbance • Disturbance substantially modifies the relationship between NPP and climate

  9. NEP is the balance between two large fluxes: GPP and ecosystem respiration

  10. Ecosystem Carbon Balance Recosys= Resp. of plants, animals, and soil microbes Net Ecosystem Production (NEP) = GPP - Recosys Net Ecosystem Exchange (NEE) is fairly similar, but… Remember to check the sign convention! Sensu Chapin et al. 2006

  11. Flux to ecosystem Ecosystem accumulating C-sink Ecosystem loosing C-source Flux to atmosphere Is + NEE accumulation of C in the ecosystem, or in the atmosphere? Valentini et al. 1998

  12. Ecosystem Carbon Balance Net Ecosystem Carbon Balance (NECB) = Net rate of C accumulation or loss dC/dt Sensu Chapin et al. 2006

  13. Ecosystem Carbon Balance Net Ecosystem Carbon Balance (NECB) = GPP - Recosys  other C transfers Recosys= Resp. of plants, animals, and soil microbes • NECB = NPP  Flateral • Rheterotrophic • -Fdisturb • -Fleach • -Femiss

  14. Ecosystem Carbon Balance Steady state = NEP near zero Inputs = outputs Ecosystem + 0 - NEP (a very long) time Atmosphere

  15. Ecosystem Carbon Balance • Positive NECB; GPP > Recosys + other C losses; • ecosystem is removing C from the atmosphere = C sink • Negative NECB; GPP < Recosys + other C losses; • ecosystem is releasing C to the atmosphere = C source • Factors that affect GPP and C losses differentially will change NECB • Increased CO2 and N deposition have greater direct effect on GPP. Reduction in soil moisture in a wetland may have a greater effect on Rheterotroph and fire

  16. GPP is invariant across latitudes As a result, NEE decreases with latitude While Re decreases as latitude (T proxy) increases Valentini et al. 1998

  17. Lecture ended here

  18. Eddy Covariance (NEE)

  19. Eddy Covariance Network

  20. Net Ecosystem Exchange Tower network observations show that most ecosystems that have been measured are net sinks for CO2 1. Ecosystems may be typically net sinks of C in between disturbance (no steady state) 2. Recent environmental changes such as increased atm. CO2 or N deposition may be stimulating GPP more than Recosystem 3. C loss through leaching and other transfers may be an important component of regional C balance 4. Mid-successional ecosystems with high NPP may be over represented in the network

  21. Ecosystem Carbon Balance + 0 - NEP time Ecosystem Atmosphere Net Biome Production (NBP) = NECB, integrated over large spatial scales to include removal of C by fire and harvest Sensu Schultze et al. 1997

More Related