1 / 30

Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible in

Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible information from very large databases The Data Mining Process data prospecting and surveying transformed data preprocess & transform database selected data make model

Albert_Lan
Télécharger la présentation

Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible in

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Direct Kernel Methods

  2. Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible information from very large databases

  3. Direct Kernel Methods The Data Mining Process data prospecting and surveying transformed data preprocess & transform database selected data make model select Interpretation& rule formulation

  4. How is Data Mining Different? • Emphasis on large data sets • - Not all data fit in memory (necessarily) • - Outlier detection, rare events, errors, missing data, minority classes • - Scaling of computation time with data size is an issue • - Large data sets: i.e., large number of records and/or large number of attributes • fusion of databases • Emphasis on finding interesting, novel non-obvious information • - It is not necessarily known what exactly one is looking for • - Models can be highly nonlinear • - Information nuggets can be valuable • Different methods • - Statistics • - Association rules & Pattern recognition • - AI • - Computational intelligence (neural nets, genetic algorithms, fuzzy logic) • - Support vector machines and kernel-based methods • - Visualization (SOM, pharmaplots) • Emphasis on explaining and feedback • Interdisciplinary nature of data mining

  5. Direct Kernel Methods Data Mining Challenges • Large data sets • - Data sets can be rich in the number of data • - Data sets can be rich in the number of attributes • Data preprocessing and feature definition • - Data representation • - Attribute/Feature selection • - Transforms and scaling • Scientific data mining • - Classification, multiple classes, regression • - Continuous and binary attributes • - Large datasets • - Nonlinear Problems • Erroneous data, outliers, novelty, and rare events • - Erroneous data • - Outliers • - Rare events • - Novelty detection • Smart visualization techniques • Feature Selection & Rule formulation

  6. Direct Kernel Methods WISDOM UNDERSTANDING KNOWLEDGE INFORMATION DATA

  7. Direct Kernel Methods A Brief History in Data Mining: Pascal  Bayes  Fisher  Werbos Vapnik • A brief history of statistics and statistical learning theory: • - From the calculus of chance to the calculus of probabilities (Pascal  Bayes) • - From probabilities to statistics (Bayes  Fisher) • - From statistics to machine learning (Fisher & Tuckey Werbos Vapnik) • The meaning of “Data Mining” changed over time: • - Pre 1993: “Data mining is art of torturing the data into a confession” • - Post 1993: “Data mining is the art of charming the data into confession” • From AI expert systems  data-driven expert systems: • - Pre 1990: The experts speak (AI Systems) • - Post 1995: Attempts to let the data to speak for themselves • - 2000+: The data speak … • From the supermarket scanner to the human genome • - Pre 1998: Database marketing and marketing driven applications • - Post 1998: The emergence of scientific data mining • From theory to application

  8. Database Marketing Finance Health Insurance Medicine Bioinformatics Manufacturing “Homeland” “Security” WWW Agents Text Retrieval BioDefense Data Mining Applications and Operations • Data Preparation • - Missing data • - Data cleansing • - Visualization • - Data transformation • Clustering/Classification • Statistics • Factor analysis/Feature selection • Associations • Regression models • Data driven expert systems • Meta-Visualization/Interpretation

  9. Direct Kernel Methods Direct Kernel Methods for Data Mining: Outline • Classical (linear) regression analysis and the learning paradox • Resolving the learning paradox by • - Resolving the rank deficiency (e.g., PCA) • - Regularization (e.g., Ridge Regression) • Linear and nonlinear kernels • Direct kernel methods for nonlinear regression • - Direct Kernel Principal Component Analysis  DK-PCA • - (Direct) Kernel Ridge Regression Least Squares SVM (LS-SVM) • - Direct Kernel Partial Least Squares  Partial Least-Squares SVM • - Direct Kernel Self-Organizing Maps  DK-SOM • Feature selection, memory requirements, hyperparameter selection • Examples: • - Nonlinear toy examples (DK-PCA Haykin’s Spiral, LS-SVM for Cherkassky data) • - K-PLS for Time series data • - K-PLS for QSAR drug design • - LS-SVM Nerve agent classification with electronic nose • - K-PLS with feature selection on microarray gene expression data (leukemia) • - Direct Kernel SOM and DK-PLS for Magnetocardiogram data • - Direct Kernel SOM for substance identification from spectrograms

  10. Direct Kernel Methods Outline • Classical (linear) regression analysis and the learning paradox • Resolving the learning paradox by • - Resolving the rank deficiency (e.g., PCA) • - Regularization (e.g., Ridge Regression) • Linear and nonlinear kernels • Direct kernel methods for nonlinear regression • - Direct Kernel Principal Component Analysis  DK-PCA • - (Direct) Kernel Ridge Regression Least Squares SVMs (LS-SVM) • - Direct Kernel Partial Least Squares  Partial Least-Squares SVMs • - Direct Kernel Self-Organizing Maps  DK-SOM • Feature selection, memory requirements, hyperparameter selection • Examples: • - Nonlinear toy examples (DK-PCA Haykin’s Spiral, LS-SVM for Cherkassky data) • - K-PLS for Time series data • - K-PLS for QSAR drug design • - LS-SVM Nerve agent classification with electronic nose • - K-PLS with feature selection on microarray gene expression data (leukemia) • - Direct Kernel SOM and DK-PLS for Magnetocardiogram data

  11. Direct Kernel Methods Review: What is in a Kernel? • A kernel can be considered as a (nonlinear) data transformation • - Many different choices for the kernel are possible • - The Radial Basis Function (RBF) or Gaussian kernel is an effective nonlinear kernel • The RBF or Gaussian kernel is a symmetric matrix • - Entries reflect nonlinear similarities amongst data descriptions • - As defined by:

  12. Docking Ligands is a Nonlinear Problem DDASSL Drug Design and Semi-Supervised Learning

  13. Direct Kernel Methods Histograms PIP (Local Ionization Potential) Wavelet Coefficients Electron Density-Derived TAE-Wavelet Descriptors • Surface properties are encoded on 0.002 e/au3 surface Breneman, C.M. and Rhem, M. [1997] J. Comp. Chem., Vol. 18 (2), p. 182-197 • Histograms or wavelet encoded of surface properties give Breneman’s TAE property descriptors • 10x16 wavelet descriptore

  14. Direct Kernel Methods • Binding affinities to human serum • albumin (HSA): log K’hsa • Gonzalo Colmenarejo, GalaxoSmithKline • J. Med. Chem. 2001, 44, 4370-4378 • 95 molecules, 250-1500+ descriptors • 84 training, 10 testing (1 left out) • 551 Wavelet + PEST + MOE descriptors • Widely different compounds • Acknowledgements: Sean Ekins (Concurrent) • N. Sukumar (Rensselaer)

  15. Direct Kernel Methods Validation Model: 100x leave 10% out validations

  16. Direct Kernel Methods Feature Selection (data strip mining) PLS, K-PLS, SVM, ANN Fuzzy Expert System Rules GA or Sensitivity Analysis to select descriptors

  17. Direct Kernel Methods K-PLS Pharmaplots 511 features 32 features

  18. Direct Kernel Methods Microarray Gene Expression Data for Detecting Leukemia • 38 data for training • 36 data for testing • Challenge: select ~10 out of 6000 genes • used sensitivity analysis for feature selection (with Kristin Bennett)

  19. Direct Kernel Methods

  20. Direct Kernel Methods

  21. Direct Kernel Methods with Wunmi Osadik and Walker Land (Binghamton University) Acknowledgement: NSF

  22. Direct Kernel Methods Magnetocardiography at CardioMag Imaging inc.

  23. Direct Kernel Methods Left: Filtered and averaged temporal MCG traces for one cardiac cycle in 36 channels (the 6x6 grid). Right Upper: Spatial map of the cardiac magnetic field, generated at an instant within the ST interval. Right Lower: T3-T4 sub-cycle in one MCG signal trace

  24. Direct Kernel Methods Magneto-cardiogram Data with Karsten Sternickel (Cardiomag Inc.) and Boleslaw Szymanski (Rensselaer) Acknowledgemnent: NSF SBIR phase I project

  25. Direct Kernel Methods SVMLib Linear PCA SVMLib Direct Kernel PLS

  26. Direct Kernel Methods Direct Kernel PLS with 3 Latent Variables

  27. Direct Kernel Methods Direct Kernel with Robert Bress and Thanakorn Naenna

  28. WORK IN PROGRESS GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT DDASSL Drug Design and Semi-Supervised Learning

  29. Direct Kernel Methods Santa Fe Time Series Prediction Competition • 1994 Santa Fe Institute Competition: 1000 data chaotic laser data, predict next 100 data • Competition is described in Time Series Prediction: Forecasting the Future and • Understanding the Past, A. S. Weigend & N. A. Gershenfeld, eds., Addison-Wesley, 1994 • Method: - K-PLS with  = 3 and 24 latent variables • - Used records with 40 past data for training for next point • - Predictions bootstrap on each other for 100 real test data • Entry “wouldhave won” the competition

  30. Direct Kernel Methods www.drugmining.com Kristin Bennett and Mark Embrechts

More Related