a study of approaches for object recognition n.
Skip this Video
Loading SlideShow in 5 Seconds..
A Study of Approaches for Object Recognition PowerPoint Presentation
Download Presentation
A Study of Approaches for Object Recognition

A Study of Approaches for Object Recognition

360 Vues Download Presentation
Télécharger la présentation

A Study of Approaches for Object Recognition

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. A Study of Approaches for Object Recognition Presented by Wyman Wong 12/9/2005

  2. Outlines • Introduction • Model-Based Object Recognition • AAM • Inverse Composition AAM • View-Based Object Recognition • Recognition based on boundary fragments • Recognition based on SIFT • Proposed Research • Conclusion and Future Work

  3. Introduction • Object Recognition • A task of finding 3D objects from 2D images (or even video) and classifying them into one of the many known object types • Closely related to the success of many computer vision applications • robotics, surveillance, registration … etc. • A difficult problem that a general and comprehensive solution to this problem has not been made

  4. Introduction • Two main streams of approaches: • Model-Based Object Recognition • 3D model of the object being recognized is available • Compare the 2D representation of the structure of an object with the 2D projection of the model • View-Based Object Recognition • 2D representations of the same object viewed at different angles and distances when available • Extract features (as the representations of object) and compare them to the features in the feature database

  5. Introduction • Pros and Cons of each main stream: • Model-Based Object Recognition • Model features can be predicted from just a few detected features based on the geometric constraints • Models sacrifice its generality • View-Based Object Recognition • Greater generality and more easily trainable from visual data • Matching is done by comparing the entire objects, some methods may be sensitive to clutter and occlusion

  6. Model-Based Object Recognition • Commonly used in face recognition • General Steps: • Locate the object, • locate and label its structure, • adjust the model's parameters until the model generates an image similar enough to the real object. • Active Appearance Models (AAM) have been proved to be highly useful models for face recognition

  7. Active Appearance Models • They model shape and appearance of objects separately • Shape: the vertex locations of a mesh • Appearance: the pixels’ values of a mesh • Both of the parameters above used PCA to generalize the face recognition to generic face • Fitting an AAM: non-linear optimization solution is applied which iteratively solve for incremental additive updates to the shape and appearance coefficients

  8. Inverse Compositional AAMs • The major difference of these models with AAMs is the fitting algorithm • AAM: additive incremental update shape and appearance parameters • ICAAM: inverse compositional update – The algorithm updates the entire warp by composing the current warp with the computed incremental warp

  9. View-Based Object Recognition • Common approaches: • Correlation-based template matching (Li, W. et al. 95) • SEA, PDE, … etc • Not effective when the following happens: • illumination of environment changes • Posture and scale of object changes • Occlusion • Color Histogram (Swain, M.J. 90) • Construct histogram for an object and match it over image • It is robust to changing of viewpoint and occlusion • But it requires good isolation and segmentation of objects

  10. View-Based Object Recognition • Common approaches: • Feature based • Extract features from the image that are salient and match only to those features when searching all location for matches • Feature types: groupings of edges, SIFT … etc • Feature’s property preferences: • View invariant • Detected frequently enough for reliable recognition • Distinctive • Image descriptor is created based on detected features to increase the matching performance • Image descriptor = Key / Index to database of features • Descriptor’s property preferences: • Invariant to scaling, rotation, illumination, affine transformation and noise

  11. Nelson’s Approach • Recognition based on 2D Boundary Fragments • Prepare 53 clean images for each object and build 3D recognition database: Object Camera

  12. Nelson’s Approach • Test images used in Nelson’s experiment and their features

  13. Nelson’s Approach • Nelson’s experiment has shown his approach has high accuracy • 97.0% success rate for 24 objects database • under the following conditions: • Large number of images • Clean images • Very different objects • No occlusion and clutter

  14. Lowe’s Approach • Recognition based on Scale Invariant Feature Transform (SIFT) • SIFT generates distinctive invariant features • SIFT based image descriptors are generally most resistant to common image deformations (Mikolajczyk 2005) • SIFT – four steps: • Scale-space extrema detection • Keypoint localization • Orientation assignment • Keypoint descriptor computation

  15. Scale-space extrema detection • DOG ~ LOG • Search over all sample points in all scales and find extrema that are local maxima or minima in laplacian space Small keypoints  Solve occlusion problem Large keypoints  Robust to noise and image blur

  16. Keypoint localization • Reject keypoints with the following properties: • Low contrast (sensitive to noise) • Localized along edge (sliding effect) • Solution: • Filter points with value D below 0.03 • Apply Hessian edge detector

  17. Orientation assignment • Pre-compute the gradient magnitude and orientation • Use them to construct keypoint descriptor

  18. Keypoint descriptor computation • Create orientation histogram over 4x4 sample regions around the keypoint locations • Each histogram contains 8 orientation bins • 4x4x8 = 128 elements vectors (distinctively representing a feature)

  19. Object Recognition based on SIFT • Nearest-neighbor algorithm • Matching: assign features to objects • There can be many wrong matches • Solution • Identify clusters of features • Generalized Hough transform • Determine pose of object and then discard outliers

  20. Proposed Research • Personally, I think model-based approach does have better performance • Success of model-based approach requires: • All models of objects to be detected • Automatically construct models • Automatically select the best model • How do the system know which 3D model to be used on a specific image of object? • By view-based approach • Human looks at an image of object for a moment and then realize which model to be used on that object • Then use the specific model to refine the identification of the specific object

  21. Hybrid of bottom-up and top-down • View-based approaches just presented are bottom-up approaches • Features: edges, extrema (Low Level) • Descriptors of features • Matching • Identification of object (High Level) • Can it be like that? • Features • … • Matching (Lower Level) • Guessing of object (Higher Level) • Matching (Lower Level) • Guessing of object (Higher Level) • … • Identification of object

  22. Hierarchy of features • Lowe’s system • All features have equal weight in voting of object during identification of object (subject to be verified by examining the opened source code) • Special features do not have enough voting power to shift the result to the correct one • Consider the following scenario: • Two objects have many similar features, a1to a100 are similar to b1to b100, and have just one very different feature, a* for object A and b* for object B • Many a1to a100 may be poorly captured by imaging device and mismatched as b1to b100 , even we can still recognize the feature a*, the system may still think the object is B Object A Object B

  23. Extension of SIFT • Color descriptors • Local texture measures incorporated into feature descriptors • Scale-invariant edge groupings • *Generic object class recognition

  24. Conclusion and Future Work • Discussed the different approaches in object recognition • Discussed what is SIFT and how it works • Discussed the possible extensions to SIFT • Design hybrid approach • Design extensions

  25. Q & A Thank you very much!

  26. Things to be understood • Find extrema over same scale space is good, why need to find over different scale?