1 / 27

270 likes | 513 Vues

Infusing Connections into Core Courses for Future Secondary Teachers. Steve Benson Al Cuoco Education Development Center. Karen Graham University of New Hampshire. Neil Portnoy Stony Brook University. MAA Minicourse #3; MAA Mathfest Albuquerque, NM; August 4 - 7, 2005 .

Télécharger la présentation
## Infusing Connections into Core Courses for Future Secondary Teachers

**An Image/Link below is provided (as is) to download presentation**
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.
Content is provided to you AS IS for your information and personal use only.
Download presentation by click this link.
While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

**Infusing Connections into Core Courses**for Future Secondary Teachers Steve Benson Al Cuoco Education Development Center Karen Graham University of New Hampshire Neil Portnoy Stony Brook University MAA Minicourse #3; MAA MathfestAlbuquerque, NM; August 4 - 7, 2005**Agenda for today**• Introduction • Philosophy • Brief introduction to Seeing the Connections materials • Engage in sample activities as learners • Two activities - divide into working groups • Engage in activity (don’t just read it) • Discussion • Brief sharing between groups • Knowledge of mathematics for teaching • How might these activities enable “connection making”?**Agenda for Saturday**Thursday’s questionnaire “Homework” questionsAdapting existing materials Lawrence (MA) high school study group Adoption and implementation Final thoughts, next steps**Motivation**I’m still not sure why I had to learn about rings and fields and other such topics to be a high school math teacher. — A veteran high school teacher**Messages from the mathematics community**Over the past 15 years, two refrains have echoed through the discourse about teachers’ knowledge of mathematics: (1) that U.S. teachers mathematical knowledge is weak(2) that the mathematical knowledge needed for teaching is different from that needed by mathematicians. — Mathematical Proficiency for All Students: Toward a Strategic Research and Development Program in Mathematics Education (RAND, 2001) The mathematical knowledge needed by teachers at all levels is substantial, yet quite different from that required by students pursuing other mathematics-related professions. . . . Collegecourses developing this knowledge should make connections between the mathematics being studied and mathematics prospective teachers will teach. — The Mathematical Education of Teachers (CBMS, 2001)**Messages from the mathematics community**• Teachers need several different kinds of mathematical knowledge: • Knowledge of the whole domain • Deep, flexible knowledge about curriculum goals and about the important ideas that are central to their grade level • Knowledge about the challenges students are likely to encounter in learning these ideas • Knowledge about how students’ understanding can be assessed — Principles and Standards for School Mathematics (NCTM, 2001)**Responses to the call for connections**Ways to Think About Mathematics: Activities and Investigations forGrade 6-12 Teachers; Benson, Addington, Arshavsky, Cuoco, Goldenberg, Karnowski; Corwin Press, 2004.http://www2.edc.org/wttam Mathematical Connections: A Companion for Teachers and Others;Cuoco, MAA, 2005 Mathematics for High School Teachers - An Advanced Perspective;Usiskin, Peressini, Marchisotto, Stanley; Prentice Hall, 2003. Seeing the Connections: Promoting Profound Understanding of Secondary Mathematics; Benson, Cuoco, Graham, Greenes, Grundmeier, Portnoy (in preparation)**Seeing the Connections:Promoting Profound Understanding of**Secondary Mathematics A collaborative curriculum project from Education Development Center University of New Hampshire Stony Brook University Funded by NSF DUE-0231342 Steve Benson sbenson@edc.org Karen Graham karen.graham@unh.edu Al Cuoco acuoco@edc.org Neil Portnoy nportnoy@math.sunysb.edu http://www2.edc.org/connect**The Seeing the Connections materials**The Seeing the Connections materials are the “offspring” of three NSF-funded proof-of-concept projects: Making the Connections: Higher Algebra to School Mathematics(DUE-9950722) Carole Greenes, PI, BU Al Cuoco, Co-PI, EDC Carol Findell, BU Emma Previato, BU Making Mathematical Connections in Programs for Prospective Teachers (DUE-9981029) Karen Graham, PI, UNH Neil Portnoy, CSU, Chico* Todd Grundmeier, UNH‡ Gateways to Advanced Mathematical Thinking (DUE-9450731) Al Cuoco PI, EDC Wayne Harvey, Co-PI, EDC * Now at Stony Brook University ‡ Now at California State University San Luis Obispo**Engaging in a sample activity**Engage in the activity as a learner, yourself Think about how a future secondary teacher might engage with the activity, as well Keep track of questions and observations (share them with your working group, as well as the whole group)**“Homework” questions**• Think about the activity you worked on Thursday. • What important mathematical ideas are learned from engaging in this activity? • Why is this activity important for prospective secondary teachers? For other students? • In what course(s) would this activity fit?**Adapting Existing Materials**PROBLEM Find the line that passes through the point (3,4) that cuts off the smallest area in the first quadrant. Solve the problem any way you can and, whether you come up with an exact or approximate solution, pay attention to the process and methods you use in solving it. Record some of your thinking about how to solve the problem, and any insights you gained by thinking about the process/methods used. Make sure to include the different approaches you tried, and which directions or methods failed to help, which seemed most helpful, and why.**Knowledge of Mathematics for Teaching**What undergraduate mathematics is important for secondary teachers to understand? How might an understanding of that mathematics help someone be a better teacher? What topics in secondary mathematics provide seeds for the study of undergraduate mathematics? How might the study of that undergraduate topic be designed?**Knowledge of Mathematics for Teaching**• Not everything a teacher needs to know ends up on the chalkboard. • — Mark Saul • The ability “to think deeply about simple things” (A. Ross)What’s really behind the geometry of multiplying complex numbers? • The ability to create activities that uncover central habits of mindWhat do 53/2and 5 mean?**Knowledge of Mathematics for Teaching (cont’d)**• The ability to see underlying connections and themes • Connections • Linear Algebra brings coherence to secondary geometry • Number Theory sheds light on what otherwise seem like curiosities in arithmetic • Abstract Algebra provides the tools needed to transition from arithmetic with integers to arithmetic in other systems. • Analysis provides a framework for separating the substance from the clutter in precalculus • Mathematical Statistics has the potential for helping teachers integrate statistics and data analysis into the rest of their program**Knowledge of Mathematics for Teaching (cont’d)**• The ability to see underlying connections and themes • Themes • Algebra: extension, representation, decomposition • Analysis: extension by continuity, completion • Number Theory: reduction, localization**Knowledge of Mathematics for Teaching (cont’d)**• The “mining” of student ideas • The class was using calculators and estimation to get decimal • approximations to . One student, Marla, looked at how you do out long multiplication and realized that none of these • decimals would ever work because if you square a finite (non-integer) decimal, there’ll be a digit to the right of the decimal • point, so you can’t ever get an integer. So, Marla had the start • of a proof that can’t be represented by a terminating decimal. • But where does she go from here? • — Adapted from “A Dialogue About Teaching” in What’s • Happening in Math Class? (Teachers College Press, 1996).**The Seeing the Connections project is producing curriculum**modules for use in mathematics courses that help preservice teachers develop a knowledge ofmathematics for teaching. • The StC curriculum will help secondary teachers develop important mathematical knowledge and skills required in their future careers: • designing effective lessons • emphasizing certain ideas over others • connecting ideas across the grades • understanding germs of insight in students' questions • placing precollege topics in the broader mathematical landscape. • The project staff, combining extensive expertise in curriculum development, undergraduate and secondary teaching, teacher preparation and professional development, and education research, will create and make widely available (in paper and electronic formats) a library of materials that can be used in a wide range of preservice and inservice environments.**Making Mathematical Connections in Programs for Prospective**Teachers Making Mathematical Connections in Programs for Prospective Teachers, developed a series of activities that provide prospective teachers with the opportunity to make connections between two mathematical areas (transformational geometry and liner algebra) and school and university mathematics. In addition, there is a series of 3 pedagogical activities that the prospective teachers explore within the context of the developing mathematical understandings above. These activities involve the prospective teachers in the analysis of pre-college mathematical curricula and tasks, the analysis of classroom observations conducted in middle school and/or high school classrooms, and the development, implementation, and evaluation of a class activity focused on transformational geometry.**Making Mathematical Connections in Programs for Prospective**Teachers • 1- Isometries of the Plane • Discover the four basic isometries (rotation, reflection, translation, and glide). • Reinforce the place of definition in mathematics. Sharing definitions and the ensuing discourse is likely to bring out the importance of careful wording. • Identify similarity transformations. • Make connections between functions and geometric transformations. • 2- Rotations, Reflections, Translations, and Glides • Discover basic properties of various isometries. • Understand definitions and invariants of each isometry. • 3- Compositions • Discover that the class of isometries is preserved by composition. • View isometries as functions.**Making Mathematical Connections in Programs for Prospective**Teachers • 4- Proof with Isometries • Be familiar with the use of isometries in proof. • Consider basic Euclidean postulates. • 5- The Human Vertices • Enable students to make connections (physically) between transformational geometry and linear algebra. • Linear transformations are functions. • Non-invertible transformations collapse R2 to R1or to {0}. • Sign of the determinant indicates orientation. • 6- Isometries and Linear Algebra • This activity is meant to bring closure to the mathematical ideas connecting transformational geometry and linear algebra by introducing the idea of a group structure.**Making the Connections: Higher Algebra to School Mathematics**Making the Connections: Higher Algebra to School Mathematicswas a proof-of-concept project, funded by the National Science Foundation (DUE-9950722), which produced materials for use in courses for preservice mathematics teachers that make explicit connections between the mathematics they learn in college to the mathematics they will eventually teach. The content focus of this project was algebra and number theory with three main themes: Modular Arithmetic, Periods of RepeatingDecimals, and The Chinese Remainder Theorem.**Making the Connections: Higher Algebra to School Mathematics**• Numbers, Systems, and Divisibility (prototype module) 1. Algebra as Structure 2. Modular Arithmetic 3. Making it a System 4. Decimals, Fractions, and Long Division 5. The Fundamental Theorem of Arithmetic 6. Interlude 7. Units, Orders, and Periods 8. The Chinese Remainder Theorem • Etude 10. Euler, Units, and Periods of Decimals 11. Irrational Numbers: An Introduction**Gateways to Advanced Mathematical Thinking**Gateways to Advanced Mathematical Thinking was a dual curriculum development/research project funded by the National Science Foundation (DUE 9450731). The development component of the project built a model curriculum module for use with undergraduates, and particularly with preservice teachers, which motivates appreciation for mathematics, focuses on conceptual understanding without sacrificing formal techniques, and makes explicit connections to the high school curriculum. Topics include precalculus methods for solving optimization problems, both exactly and approximately.**Gateways to Advanced Mathematical Thinking**• Part1: Geometric Techniques • Minimizing Distance • Maximizing Area • Contour Lines • Part 2: Algebraic Techniques • Squares are never negative • The Arithmetic Geometric Mean Inequality • Part 3: Graphical Techniques • The Box Problem**Seeing the Connectionsmaterials are available online**Making Mathematical Connections in Programs for Prospective Teachers http://www2.edc.org/connect/mathconnlink.html Making the Connections: Higher Algebra to School Mathematics http://www2.edc.org/connect/connectionslink.html Gateways to Advanced Mathematical Thinking http://www2.edc.org/connect/gatewayslink.html Copies of slides and handouts will be available at http://www2.edc.org/cme/showcase.html All files are in PDF or Powerpoint format Questions? Problems? Send email to sbenson@edc.org

More Related