1 / 23

Previously

Previously . Microbial survival in environmental media Water, land, air Small scale sanitation, composting latrines, etc Conventional wastewater treatment in developed countries Screening/settling/”activated sludge”/disinfection Overview of processes, chemical and physical. Outline.

Pat_Xavi
Télécharger la présentation

Previously

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Previously • Microbial survival in environmental media • Water, land, air • Small scale sanitation, composting latrines, etc • Conventional wastewater treatment in developed countries • Screening/settling/”activated sludge”/disinfection • Overview of processes, chemical and physical

  2. Outline • But what about developing countries? • In many cases, no wastewater treatment • “Natural attenuation” • What are some practical options for wastewater treatment in poor countries? • (& see handouts) • More about microbes and how they are reduced in wastewater

  3. Alternative Biological Treatment of Wastewater:Alternatives for Small and Rural Communities • Letting nature do its thing • Lagoons, Ponds and Ditches • aerobic, anaerobic and facultative; for smaller communities and farms • enteric microbes are reduced by ~90-99% per pond • multiple ponds in series increases microbe reductions • Constructed Wetlands • aerobic systems containing biologically active, oxidizing microbes and emergent aquatic plants • Lagoons and constructed wetlands are practical and economical sewage treatment alternatives when land is available at reasonable cost (Phnom Penh)

  4. Facultative Oxidation (Waste Stabilization) Pond

  5. Stabilization Ponds or Lagoons • Aerobic and Facultative Ponds: • Biologically Rx by complementary activity of algae and bacteria. • Used for raw sewage as well as primary‑ or secondary‑Rx’d. effluent. • Bacteria and other heterotrophs convert organic matter to carbon dioxide, inorganic nutrients, water and microbial biomass. • Algae use CO2 and inorganic nutrients, primarily N and P, in photosynthesis to produce oxygen and algal biomass. • Many different pond designs have been used to treat sewage • Used here in the US in decentralized plants and CAFOs

  6. Stabilization Ponds or Lagoons, cont • Facultative ponds: upper, aerobic zone and a lower anaerobic zone. • Aerobic heterotrophics and algae proliferate in the upper zone. • Biomass from upper zone settles into the anaerobic, bottom zone. • Bottom solids digested by anaerobic bacteria • Also used with aquaculture systems

  7. Enteric Microbe/Pathogen Reductions in Stabilization Ponds • BOD and enteric microbe/pathogen reductions of 90%, esp. in warm, sunny climates. • Even greater enteric microbe /pathogen reductions by using two or more ponds in series • Better BOD and enteric microbe/pathogen reductions if detention (residence) times are sufficiently long (several weeks to months) • Enteric microbes reduced by 90% in single ponds and by multiples of 90% for ponds in series. • Microbe removal may be quite variable depending upon pond design, operating conditions and climate. • Reduction efficiency lower in colder weather and shorter retention times

  8. Constructed Wetlands and Enteric Microbe Reductions • Surface flow (SF) wetlands reduce enteric microbes by ~90% • Subsurface flow (SSF) wetlands reduce enteric microbes by ~99% • Greater reduction in SSF may be due to greater biological activity in wetland bed media (porous gravel) and longer retention times • Multiple wetlands in series incrementally increase microbial reductions, with 90-99% reduction per wetland cell.

  9. Septic Tank-Soil Absorption Systems for On-Site Sewage Rx • Used where there are no sewers and community sewage treatment facilities: ex.: rural homes • Septic tank: solids settle and are digested • Septic tank effluent (STE) is similar to primary sewage effluent • Distribute STE to soil via a sub-surface, porous pipe in a trench • Absorption System: Distribution lines and drainfield • Septic tank effluent flows through perforated pipes located 2-3 feet below the land surface in a trenches filled with gravel, preferably in the unsaturated (vadose) zone. • Effluent discharges from perforated pipes into trench gravel and then into unsaturated soil, where it is biologically treated aerobically. • Enteric microbes are removed and retained by the soil

  10. More on sanitation technologies: • www.wateraid.co.uk • Handouts • For more on small-scale sanitation, check out The Humanure Handbook

  11. Log10 Reduction of Pathogens by Wastewater Rx Processes

  12. Log10 Reduction of Pathogens by Wastewater Rx Processes

  13. Indicator Microbe Levels in Raw and Treated Municipal Sewage: Sewage Treatment Efficacy 100000000 100000000 10000000 10000000 1000000 1000000 100000 100000 10000 10000 1000 1000 Number/100 ml 100 100 10 10 1 1 F. col. E. coli Ent. C. p. F+ phg. Raw Treated (geom. mean values of 24 biweekly samples)

  14. REMOVAL OF ENTERIC BACTERIA BY SEWAGE TREATMENT PROCESSES ORGANISM PROCESS % REMOVAL Fecal indicators Primary sed. 0‑60% E. coli Primary sed. 32-50% Fecal indicators Trickling filt. 20‑80% Fecal indicators Activated sludge 40‑95% Fecal indicators Stab. ponds, 1 mo. >99.9999% @ high temp. Salmonellae Primary sed. 79%, 6‑7 hrs. Salmonellae " 73%, 6‑7 hrs.

  15. Entamoeba histolytica Reduction by Sewage Treatment ORGANISM PROCESS % REMOVAL E. histolytica Primary Sed. 50% E. histolytica Primary Sed., 2 hr. 64% E. histolytica Primary sed., 1 hr. 27% E. histolytica Primary sed. + Trickl. Filt. 25% E. histolytica Primary sed. + Act. Sludge 83% E. histolytica Oxidation ditch + Sedimentation 91% E. histolytica Stabilization ponds + sedimentation 100% E. histolytica " 100%, 94%, 87% E. histolytica " 100% E. histolytica Aerated lagoon (no settling) 84%

  16. Microbial Reductions by Wastewater Treatment

  17. Disinfection of Wastewater • Intended to reduce microbes in 1o or 2o treated effluent • Typically chlorination • Alternatives: UV radiation, ozone and chlorine dioxide • Good enteric bacterial reductions: typically, 99.99+% • Meet fecal coliform limits for effluent dicharge • Often 200-1,000 per 100 ml geometric mean as permitted discharge limit • Less effective for viruses and parasites: typically, 90-99% reduction • Toxicity of chlorine and its by‑products to aquatic life now limits wastewater chlorination; may have to: • Dechlorinate • Use an alternative, less toxic chemical disinfectant or • Use an alternative treatment process to reduce enteric microbes

  18. When Wastewater Disinfection is Recommended or Required • Discharge to surface waters: • near water supply intakes • used for primary contact recreation • used for shellfish harvesting • used for irrigation of crops and greenspace • other direct and indirect reuse and reclamation purposes • Discharge to ground waters waters: • used as a water supply source • used for irrigation of crops and greenspace • other direct and indirect reuse and reclamation purposes

  19. Wastewater Reuse: reading for Thursday • Wastewater is sometimes reused for beneficial, non-potable purposes in arid and other water-short regions. • Often uses advanced or additional treatment processes, sometimes referred to as “reclamation” • Biological treatment in “polishing” ponds and constructed wetlands • Physical-chemical treatment processes as used for drinking water: • Coagulation-flocculation and sedimentation • Filtration: granular medium filters; membrane filters • Granular Activated Carbon adsorption • Disinfection

More Related