1 / 40

From: Understanding Earth (Grotzinger & Jordan 2010)

From: Understanding Earth (Grotzinger & Jordan 2010). From: Understanding Earth (Grotzinger & Jordan 2010). From: Understanding Earth (Grotzinger & Jordan 2010). THE IRON CATASTROPHE. From: Understanding Earth (Grotzinger & Jordan 2010).

adrianam
Télécharger la présentation

From: Understanding Earth (Grotzinger & Jordan 2010)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. From: Understanding Earth (Grotzinger & Jordan 2010)

  2. From: Understanding Earth (Grotzinger & Jordan 2010)

  3. From: Understanding Earth (Grotzinger & Jordan 2010)

  4. THE IRON CATASTROPHE From: Understanding Earth (Grotzinger & Jordan 2010) The important thing they forgot to mention is that the sinking of the iron released great amounts of potential energy which melted the entire earth, and that allowed the differentiation to take place.

  5. COMPARISON OF VENUS’, EARTH’S, AND MARS’ TOPOGRAPHY From: Understanding Earth (Grotzinger & Jordan 2010)

  6. Known, large meteorite impact craters From: Understanding Earth (Grotzinger & Jordan 2010)

  7. From: Understanding Earth (Grotzinger & Jordan 2010)

  8. From: Understanding Earth (Grotzinger & Jordan 2010)

  9. From: Understanding Earth (Grotzinger & Jordan 2010)

  10. From: Understanding Earth (Grotzinger & Jordan 2010)

  11. From: Understanding Earth (Grotzinger & Jordan 2010)

  12. From: Understanding Earth (Grotzinger & Jordan 2010)

  13. From: Understanding Earth (Grotzinger & Jordan 2010)

  14. From: Understanding Earth (Grotzinger & Jordan 2010)

  15. From: Understanding Earth (Grotzinger & Jordan 2010)

  16. From: Understanding Earth (Grotzinger & Jordan 2010)

  17. From: Understanding Earth (Grotzinger & Jordan 2010)

  18. From: Understanding Earth (Grotzinger & Jordan 2010)

  19. From: Understanding Earth (Grotzinger & Jordan 2010)

  20. From: Understanding Earth (Grotzinger & Jordan 2010)

  21. From: Understanding Earth (Grotzinger & Jordan 2010)

  22. From: Understanding Earth (Grotzinger & Jordan 2010)

  23. From: Understanding Earth (Grotzinger & Jordan 2010)

  24. Mid-Cambrian (510 Ma): After the breakup of Rodinia, Laurentia straddled the equator. Its southern side was a passive continental margin, bounded on the south by the Iapetus Ocean. From: Understanding Earth (Grotzinger & Jordan 2010)

  25. From: Understanding Earth (Grotzinger & Jordan 2010) Late Ordovician (450 Ma): The island arc built up by the southward-directed subduction of Iapetus lithosphere collided with Laurentia in the mid- to late- Ordovician, causing the Taconic orogeny.

  26. Early Devonian (400 Ma): The collision of Laurentia with Baltica caused the Caledonian orogeny and formed Laurussia. The southward continuation of the Convergence caused the Acadian orogeny. From: Understanding Earth (Grotzinger & Jordan 2010)

  27. Early Carboniferous (340 Ma): The collision of Gondwana with Laurussia began With the Variscan orogeny in what is now central Europe. From: Understanding Earth (Grotzinger & Jordan 2010)

  28. Late Carboniferous (300 Ma): Continued collision of Gondwana and Laurasia along the margin of the N. American craton, causing the Apalacian orogeny. At the same time, Siberia converged with Laurussia in the Ural Orogeny to form Laurasia, while the Hercynian orogeny created new mountain belts across Europe and N. Africa. From: Understanding Earth (Grotzinger & Jordan 2010)

  29. From: Understanding Earth (Grotzinger & Jordan 2010) Early Permian (270 Ma): The end product of these episodes of continental Convergence was the supercontinent of Pangea.

  30. From: Understanding Earth (Grotzinger & Jordan 2010)

  31. From: Understanding Earth (Grotzinger & Jordan 2010)

  32. From: Understanding Earth (Grotzinger & Jordan 2010)

  33. From: Understanding Earth (Grotzinger & Jordan 2010)

  34. From: Understanding Earth (Grotzinger & Jordan 2010)

  35. From: Understanding Earth (Grotzinger & Jordan 2010)

  36. From: Understanding Earth (Grotzinger & Jordan 2010)

  37. From: Understanding Earth (Grotzinger & Jordan 2010)

  38. From: Understanding Earth (Grotzinger & Jordan 2010)

  39. From: Understanding Earth (Grotzinger & Jordan 2010)

  40. From: Understanding Earth (Grotzinger & Jordan 2010)

More Related