560 likes | 767 Vues
LIU Chuan Yong 刘传勇 Institute of Physiology Medical School of SDU Tel 88381175 (lab) 88382098 (office) Email: liucy@sdu.edu.cn Website: www.physiology.sdu.edu.cn. CHAPTER 4 THE CARDIOVASCULAR SYSTEM. Weight of the heart 300g Work: 75/min, 10000 beats /day
E N D
LIU Chuan Yong 刘传勇 Institute of Physiology Medical School of SDU Tel 88381175 (lab) 88382098 (office) Email: liucy@sdu.edu.cn Website: www.physiology.sdu.edu.cn
CHAPTER 4 THE CARDIOVASCULAR SYSTEM
Weight of the heart 300g • Work: 75/min, 10000 beats /day • 35 million beats /year, 2.5 billion beats/life • 70ml/beat, 7200 l/day The work of the heart in one life is equivalent to lifting 30 tons to the Mount Everest The busy and hard working heart!
MAIN FUNCTIONS OF THE CIRCULATORY SYSTEM • Transport and distribute essential substances to the tissues. • Remove metabolic byproducts. • Adjustment of oxygen and nutrient supply in different physiologic states. • Regulation of body temperature. • Humoral communication.
B. Heart Chambers • 1. Right Heart • receives venous blood from systemic circulation • via superior and inferior vena cava into right atrium • pumps blood to pulmonary circulation from right ventricle • 2. Left Heart • receives oxygenated blood from pulmonary circulation • pumps blood into systemic circulation
C. Heart Valves • 1. Atrioventricular • tricuspid--between RA and RV; three leaflets • mitral--between LA and LV; two leaflets • 2. Semilunar • pulmonic--three leaflets • aortic--three leaflets
Heart Valves • Prevent backward regurgitation • Provide low resistance to forward flow
Section 1 The Heart as a Pump • I Cardiac Cycle • The period from the end of one heart contraction to the end of the next
Cardiac Cycle • Diastole is longer than systole • The sequence of systole and diastole
Cardiac Cycle: diastole and systole Diastole Systole
2 The Phases of the Cardiac Cycle • Period of isometric (isovolumetric • or isovolumic) contraction Events: ventricular contraction ventricular pressure rise atrioventricular valve close the ventricular pressure increase sharply Period: 0.05 sec Importance: enable the ventricular pressure to rise from 0 to the level of aortic pressure (after-load)
(2)Period of ejection • Events: ventricular contraction continuously • the ventricular pressure rise above the arterial pressure • semilumar valves open blood pours out of the ventricles
Rapid ejection period (0.10s, 60% of the stroke volume) • Reduced ejection period (0.15s, 40% of the stroke volume)
(3) Period of isometric (isovolumic) relaxation • Events: • ventricular muscle relax • the ventricular pressure fall • lower than the aortic pressure • aortic valve close • the ventricular pressure fall sharply
Period: 0.06-0.08 s Importance: Enable the ventricular pressure fall to the level near the atrial pressure
(4) Period of filling of the ventricles Events: Ventricular muscle relax continuously the ventricular pressure is equal or lower than the atrial pressure atrioventricular valve open blood accumulated in the atria rushes into the ventricular chambers quickly from the atrium to the ventricle.
Period of rapid filling. (0.11s, amount of filling, 2/3) • Period of reduced filling (0.22s, little blood fills into the ventricle)
(5) Atrial systole • Significance, 30% of the filling • Be of major importance in determining the final cardiac output during high output states or in the failing heart
LEFT VENTRICULAR PRESSURE/VOLUME P/V LOOP 120 F E D 80 LEFT VENTRICULAR PRESSURE (mmHg) 40 B A C 0 50 100 150 LEFT VENTRICULAR VOLUME (ml)
2) Pressure changes in the atria, the a, c, and v waves. • a wave, the atrial contraction • c wave, bulging of the A-V valves when the ventricles begin to contract
v wave, at the end of ventricle contraction, • caused by the accumulated blood in the atria while the A-V valves are closed
Heart Sounds The sounds heard over the cardiac region produced by the functioning of the heart.
Heart Sounds • S1- first sound • Atrioventricular valves and surrounding fluid vibrations as valves close at beginning of ventricular systole
S2- second sound • closure of aortic and pulmonary semilunar valves at beginning of ventricular diastole • S3- third sound • vibrations of the ventricular walls when suddenly distended by the rush of blood from the atria
CARDIAC CYCLE Rapid Ventricular Filling Reduced Ejection Rapid Ejection Atrial Systole Isovolumic Relax. Reduced Ventricular Filling Atrial Systole Isovolumic contract. Aortic opens :>O Aortic closes Mitral opens Mitral Closes S1 :>D S2
II Cardiac Output • Stroke Volume – The volume pumped by the heart with each beat, • = end diastole volume – end systole volume, about 70 ml • Ejection Fraction – Stroke volume accounts for the percentage of the end diastolic volume, • = stroke volume / end diastole volume X 100%, normal range, 55-65%
II Cardiac Output • 3. Minute Volume, or Cardiac Output – the volume of the blood pumped by one ventricle in one minute • = stroke volume X heart rate. • It varies with sex, age, and exercise • 4. Cardiac Index, the cardiac output per square meter of body surface area. • the normalized data for different size individuals, • the normal range is about 3.0 – 3.5 L/min/m2
Determinants of Cardiac Output (CO) Contractility Preload Stroke Volume Afterload Heart Rate Cardiac Output
Definitions • Preload • amount of stretch on the ventricular myocardium prior to contraction • Afterload • the arterial pressure that a ventricle must overcome while it contracts during ejection • impedance to ventricular ejection
Definitions • Contractility • myocardium’s intrinsic ability to efficiently contract and empty the ventricle • (independent of preload & afterload)
Determinants of Cardiac Output 1. Preload
Determinants of Cardiac Output- Preload Preload = ventricular filling or volume
Preload approximated by measuring: • 1. Central venous pressure (CVP) = right atrial pressure. • 2. Pulmonary capillary diastolic wedge pressure (PCWP) = LVEDP • Parameters: • 1. CVP 3 mmHg (normal range 1 - 5) • 2. PCWP 9 mmHg (normal range 2 - 13) Determinants of Cardiac Output - Preload
Frank-Starling Mechanism of the Heart The intrinsic ability of the heart to adapt to changing volumes of inflowing blood
the Frank - Starling mechanism of the heart: • Left ventricle (LV) function curve, or Frank - Starling curve (1914): • Normal range of the LVEDP, 5-6 mmHg • Optimal initial preload, 15-20 mmHg (Sarcomere, 2.0 – 2.2 µm • When the LVEDP > 20 mmHg, LV work is maintained at almost the same level, does not change with the increase of LVEDP • Mechanism • Concept of heterometric regulation
Factors determining the preload (LVEDP) • Period of the ventricle diastole (filling) – heart rate • Speed of the venous return • (difference between the venous pressure and atrial pressure)
Importance of the heterometeric regulation • In general, heterometric regulation plays only a short-time role, such as during • the body posture change • artery pressure increase • unbalance of ventricular outputs • In other conditions, such as exercise, cardiac output is mainly regulated by homometric regulation.
Short time change of the arterial pressure • Transit arterial pressure rise • isovolumetric contraction phase become longer • period of ejection shorter • stroke volume less • more blood left in the ventricle left • LVEDP increase • through heterometeric regulation • stroke volume return to normal in next beat.
Long time high arterial pressure • through neural and humoral regulation • the stroke volume is maintained at normal level • pathogenesis of the cardiovascular system
Determinants of Cardiac Output - Contractility Contractility (neural and humoral regulation) Sympathetic nerve (norepinephrine) or the epinephrine and norepinephrine (adrenal gland) enhance the strength and the velocity of the cardiac contraction. The change of myocardial property is independent of the preload. We call it the contractility. Importance: exert a long – time influence on the cardiac output.
Definitions • Contractility • myocardium’s intrinsic ability to efficiently contract and empty the ventricle • (independent of preload & afterload)