1 / 120

Claes Fransson, Stockholm University

Shocks in SN 1987A. Claes Fransson, Stockholm University Collaborators : R. Chevalier (UVa), Poonam Chandra (UVa) P. Gröningsson, C. Kozma, P. & N. Lundqvist, T. Nymark (SU),

Télécharger la présentation

Claes Fransson, Stockholm University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shocks in SN 1987A Claes Fransson, Stockholm University Collaborators: R. Chevalier (UVa), Poonam Chandra (UVa) P. Gröningsson, C. Kozma, P. & N. Lundqvist, T. Nymark (SU), B. Leibundgut, J. Spyromilio, K. Kjaer, R. Kotak (ESO)

  2. SN 1987A ring collision SAINTS collab.

  3. Chandra & ATCA Park et al Manchester et al

  4. Dust emission Gemini S + Spitzer Bouchet et al 2006 Spitzer 11.7  18.3  T ~ 166 K Si feature collisionally heated

  5. VLT/UVES FWHM ~ 6 km s-1 Seeing 0.5-0.8” Resolves N/S Gröningsson et al 2006

  6. Gröningsson et al 2006 [O III] 5007 Ha narrow broad He I Narrow FWHM ~ 10 km s-1 from unshocked ring Broad Vmax 300-400 km s-1 from shocked ring (Pun et al 2002)

  7. Reverse shock Gröningsson et al (2006) Smith et al (2006), Heng et al (2006) VLT/FORS Dec 2006 2002 2000 Velocity (104 km/s) Broad ~16,000 km/s emission from reverse shock going back into ejecta

  8. Reverse shock evolution Ha Ca II

  9. What is causing the reverse shock emission? Broad ~16,000 km/s emission from reverse shock going back into ejecta 1. Ly and H from charge exchange of neutral ejecta? Probably not (Heng & McCray 2007) 2. X-ray excitation by reverse shock + blobs more likely? Recombination time in ejecta long, non-thermal excitation, …. non-spherical Similar to freeze-out phase for radioactive excitation and to Type IIb/IIn CS interaction (cf SN 1993J) 3. Cosmic ray excitation?

  10. Intermediate velocity lines from shocked ring protrusions Oct 2002 Gröningsson et al 2006 N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1. Max extension ~ 300 km s-1

  11. VLT/SINFONI March 2005 He I 2.06  Adaptive optics integral field unit for J, H, K Kjaer et al 2007 J-band Expansion velocities along ring

  12. Deprojected velocities Average velocity over the ring ~ 120 km s-1 UVES gives high and low velocity tails

  13. Gröningsson et al 2006 Coronal lines VLT/UVES spectrum Max. velocity ~ shock velocity ~ 300-400 km/s Fe XIV  5303  Ts ~ 2x106 K H, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock into ring protrusions

  14. Hydrodynamics of ring collision Optical emission from radiative shocks into the ring material Radio and hard X-rays from reverse shock Borkowski et al 1997 Pun et al 2002

  15. Radiative shock structure Vs = 350 km/s no = 104 cm-3 shock photoion. broad H, [OIII],… photoion. precursor narrow Ha, [N II], [O III] coll. ioniz. X-rays Coronal lines Post-shock densities ~5x106 - 107 cm-3. Agrees with nebular diagnostics

  16. Coronal line diagnostics Gröningsson, Nymark… Shock velocity Shock velocity into hot-spots 300 – 400 km s-1 Ts ~ 2x106 K Coronal lines complement the X-rays to probe whole temp. range

  17. Near-IR VLT/ISAAC [Fe XIII] 1.0747-1.0798 

  18. X-rays Chandra: Zhekov et al (2005, 2006) also XMM by Haberl et al N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII….. Two components: High density (104 cm-3) kT ~ 0.5 keV + Low density (102 cm-3) kT ~ 3.0 keV

  19. Optical/UV from radiative shocks Soft X-rays from radiative + adiabatic shocked ring blobs Hard X-rays and radio from adiabatic reverse shock A radiative shock gives X-rays, UV, optical, IR Expect correlation between optical/UV and soft X-rays, but not with hard and radio

  20. Time evolution Optical: Gröningsson et al X-rays: Park et al 2005 Coronal lines and soft X-rays correlate. Soft X-rays from hot-spots. Hard from reverse shock & blast wave

  21. Gröningsson et al 2007 Oct 2002 Low ionization lines (up to [O III]) have Vmax ~ 250 km s-1 Coronal lines Vmax ~ 400 km s-1 Highest vel. shocks may have been adiabatic in 2002

  22. Cooling shocks Line widths of low ionization ions increase with time 2000: ~ 250 km s-1 -> 2006: ~ 450 km s-1 . Coronal lines ~ constant ~ 450 km s-1

  23. Cooling shocks yrs High velocity shocks seen in soft X-rays gradually become radiative Now, H up to ~ 450 km s-1 ne up to ~ 4x104 cm-3 ~ ring density (Lundqvist & CF 96) Expect this to continue to higher shock velocities

  24. Narrow, unshocked lines Unshocked ring ionized by SN shock breakout, then recombining Ring is now ionized by X-rays from shocks. Come-back of narrow lines Pre-ionized region ~ 5x1017 (n/104 cm-3 )-1 cm Shock models: Most of absorbed X-rays in pre-shock gas are re-emitted as [O III] We are now starting to see the re-ionization of the ring!

  25. Conclusions • SN 1987A excellent case of CSI, with both thermal • and non-thermal processes. • Line profiles probe shock distribution + dynamics • UV/optical/IR from radiative shocks • Strong correlation between increase in optical and soft X-rays • Coronal lines complement soft X-rays as shock diagnostics • Higher velocity shocks gradually cooling. Now up to ~ 450 km s-1 • Unshocked CSM is now becoming ionized. • Brightfuture!

  26. Relation to other mass losing SNe

  27. Two cases for the line widths 1. ej >> CSMType IIL, IIb SN 1993J, SN 1979C Steady wind Line width ~ Vej 2.ej << CSMType IIn… SN 1995N, SN 1998S Blobs, rings, short-lived superwinds… SN 1987A Line width ~ Vblast << Vej

  28. SN 1993J optical H Filippenko et al 1994 Fransson et al 2004 He I Transition from Type II to Type Ib = Type IIb Box-like line profiles  narrow emitting shell

  29. UV & optical line emission Cool shell behind rev. shock SN ejecta partially ionized, T<7000K fully ionized  neutral, T ~ (1-3)x104 K n ~ 1010 cm-3 n ~ 106 – 107 cm-3 H, Mg II, Fe II O III-IV, N III-V, Ne III-V

  30. SN 1993J optical/UV HST (SINS) + Keck Mg II He I H [O III] Good fit with ionized ejecta (O III etc) + cool, dense shell (H, Mg II, Fe II) Consistency of X-ray flux and UV/optical flux

  31. Type IIn SNe SN 1995N (Fransson et al 2004) Broad H-lines(5-10,000 km/s)+ narrow (< 500 km/s) lines. HI, He, O III, Ne III-V, Fe II-VII Sometimes intermediate (few x 1000 km/s) metal lines Broad (eg H) 15,000 km/s may at be due to multiple electron scattering of narrow H emission by CS gas (Chugai 2001) Light curve often dominated by CSI even at early times

  32. SN 1995N (Fransson et al 2004) Spectral modeling: N/C large + enhanced O close to reverse shock  most of the envelope lost before the explosion dM/dt ~ 10-4-10-3MO yr-1 Late superwind phase? (Heger et al 1997) Binary ejection? May be connection to Ibcs (cf Chugai & Chevalier 2006) Progenitor of SN 2005gl possibly identified as an LBV star (if not a cluster) (Gal-Yam et al 2006)

  33. CNO diagnostics SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> 1(Fransson et al 1984, 1989, 2001, 2005) SN 1998S SN 1998S IIn N/C ~ 6 SN 1995N IIn N/C ~ 4 SN 1993J IIb N/C ~ 12 SN 1987A IIP N/C ~ 5 SN 1979C IIL N/C ~ 8 Solar N/C ~ 0.25 All indicate CNO processing and mass loss and/or mixing

  34. N/C strong fcn of mass loss 40 M at ZAMS Meynet & Maeder 2003 N/C >> 1  CNO burning  heavy mass loss + mixing Rotation helps! Roche lobe overflow SN 1993J binary model Woosley et al 1994

  35. X-ray spectra useful probes of the ejecta composition solar helium zone Nymark et al 2006 oxygen zone carbon zone

  36. SN 1993J Nymark, Chandra, CF 2007 data: XMM Zimmermann & Aschenbach Chandra: Swartz et al 2003 CNO enriched H or He envelope

  37. SN 1998S Data: Pooley et al 2002 Modeling: T. Nymark, P. Chandra, CF 2007 CNO enriched H envelope

  38. Conclusions • SN 1987A excellent case of CSI, with both thermal • and non-thermal processes. • Soft X-rays and UV/optical/IR from radiative shocks • Line profiles probe shock distribution + dynamics • Correlation between increase in optical and soft X-rays • Coronal lines probe shocks with 300-400 km s-1 • Higher velocity shocks become radiative. Now up to ~ 450 km s-1 • Unshocked ring is now becoming ionized. • CS interaction has different signatures depending on CSM structure. Physics similar • CNO processing seen in most SNe with strong mass loss. • X-rays important probe of ejecta composition for all CC SNe

  39. Reverse shock Gröningsson et al (2006) Smith et al (2006), Heng et al (2006) VLT/FORS Dec 2006 2002 2000 Velocity (104 km/s) Broad ~16,000 km/s emission from reverse shock going back into ejecta Ly and H from charge exchange of neutral ejecta (??) (Heng & McCray 2007) X-ray excitation by reverse shock + blobs likely. Time evol. may tell.

  40. VLT/SINFONI Kjaer et al 2007

  41. Chandra & ATCA Park et al Manchester et al Gemini S + Spitzer Bouchet et al 2006 11.7  18.3 

  42. shock Te Fe Optical lines probe different temperature intervals in the cooling gas behind the radiative shocks

  43. VLT/SINFONI March 2005 He I 2.06 PaBr[Fe II] Adaptive optics integral field unit for J, H, K Kjaer et al 2007 J-band Expansion velocities along ring

  44. SN 1987A ring collision P. Challis/ SAINTS collab.

  45. Two cases for the mass loss Reverse CD Blast wave Vrev Vs CSM ejecta If ej >> CSM  Vs >> Vrev Type IIL, IIb SN 1993J, SN 1979C 2.ej << CSM  Vs << Vrev Type IIn SN 1995N, SN 1998S SN 1987A 1. Steady wind 2. Blobs, rings, superwinds…

  46. SN 1987A radioactivities M(56Ni) = 0.07 MO , M(57Ni) = 3x10-3 MO, M(44Ti) = 1x10-4 MO Energy stored as ionization, later released as recombination  flattening of light curve

  47. 44Ti mass M(44Ti) = (0.5, 1, 2) x10-4 MO M(44Ti) = 1 x10-4 MO Range (1-2) x10-4 MOIR photometry needed

  48. Line fluxes: H Excellent fit! But, hydrogen lines dominated by freeze out in envelope Hnot sensitive toM(44Ti)

  49. Radio and X-ray brightening 0.5-2 keV 3-10 keV + radio 3 -20 cm Park et al 2005 Manchester et al Correlation of hard X-rays and radio probably close to reverse shock

More Related