1 / 42

Generalized Parton Distributions

Generalized Parton Distributions. Duality'05, 08/06/05. M. Guidal, IPN Orsay. 1/ Generalized Parton Distributions. H,E( x , x , t ) H,E( x , x , t ). ~. ~. GPDs. (Ji, Radyushkin, Muller, Collins, Strikman, Frankfurt). t= D 2. g*. g,M,. -2x. x+ x. x- x. p - D /2.

arich
Télécharger la présentation

Generalized Parton Distributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Generalized Parton Distributions Duality'05, 08/06/05 M. Guidal, IPN Orsay

  2. 1/ Generalized Parton Distributions

  3. H,E(x,x,t) H,E(x,x,t) ~ ~ GPDs (Ji, Radyushkin, Muller, Collins, Strikman, Frankfurt) t=D2 g* g,M,... -2x x+x x-x p-D/2 p’(=p+D/2) light-cone dominance, nμ(1, 0, 0, -1) / (2 P+)

  4. Large Q2, small t Vector Ms : H,E ~ ~ PS Ms : H,E g : sT lead. twist Mesons : sL H,E(x,x,t) H,E(x,x,t) _ _ ~ ~ {g-[Hq(x,x,t)N(p’)g+N(p) + Eq(x,x,t)N(p’)is+kDkN(p)] 2M _ _ ~ ~ +g5 g-[Hq(x,x,t)N(p’)g+ g5 N(p) +Eq(x,x,t)N(p’)g5D+N(p)]} 2M GPDs (Ji, Radyushkin, Muller, Collins, Strikman, Frankfurt) t=D2 g* g,M,... -2x x+x x-x p-D/2 p’(=p+D/2) light-cone dominance, nμ(1, 0, 0, -1) / (2 P+)

  5. Large Q2, small t Vector Ms : H,E ~ ~ PS Ms : H,E g : sT lead. twist Mesons : sL H,E(x,x,t) H,E(x,x,t) _ _ ~ ~ {g-[Hq(x,x,t)N(p’)g+N(p) + Eq(x,x,t)N(p’)is+kDkN(p)] 2M _ _ ~ ~ +g5 g-[Hq(x,x,t)N(p’)g+ g5 N(p) +Eq(x,x,t)N(p’)g5D+N(p)]} 2M GPDs (Ji, Radyushkin, Muller, Collins, Strikman, Frankfurt) t=D2 g* g,M,... -2x x+x x-x p-D/2 p’(=p+D/2) light-cone dominance, nμ(1, 0, 0, -1) / (2 P+)

  6. t “Ordinary” parton distributions Elastic form factors Ji’s sum rule 2Jq =  x(H+E)(x,ξ,0)dx x x (nucleon spin)  H(x,ξ,t)dx = F(t)( ξ) H(x,0,0) = q(x), H(x,0,0) = Δq(x) ~ x +1 -1 -ξ 0 ξ : do NOT appear in DISNEW INFORMATION quark distribution anti-quark distribution q q distribution amplitude γ, π, ρ, ω… -2ξ x+ξ x-ξ ~ ~ H, H, E, E (x,ξ,t)

  7. t g* x~xB g,M,... x ~ ~ H,E,H,E p p’ Beam or target spin asymmetry contain only ImT, therefore GPDs at x = x and -x Cross-section measurement and beam charge asymmetry (ReT) integrate GPDs over x (M. Vanderhaeghen)

  8. Extensions RCS : gp->gp (intermediate t)(Radyushkin, Dihl, Feldman, Jakob, Kroll) tDVCS : gp->pg* (e+e-) (Berger, Pire, Diehl,...) tDDVCS : ep->epg* (e+e-) (M.G., Vanderhaeghen, Belitsky, Muller,...) sDDVCS : ep->ep (Vanderhaeghen, Gorschtein,...) _ IDVCS : pp->gg (Freund, Radyushkin,Shaeffer,Weiss) DVCS : ep->eDg(Frankfurt, Polyakov, Strikman, Vanderhaeghen) N-DVCS : eA->eAg (Scopetta, Pire, Cano, Polyakov, Muller, Kirschner, Berger....) Hybrids, pentaquarks,... (Pire, Anikin,Teryaev,...)

  9. DES: finite Q2 corrections (real world ≠ Bjorken limit) GPD evolution O (1/Q) O(1/Q2) Dependence on factorization scale μ : Kernel known to NLO (here for DVCS) • Gauge fixing term • Twist-3: contribution from γ*L may be expressed in terms of derivatives of (twist-2) GPDs. • - Other contributions such as small (but measureable effect). • “Trivial” kinematical corrections • Quark transverse momentum effects (modification of quark propagator) • Other twist-4 ……

  10. H(x,0,b )=FT H(x,0,t) (Burkhardt) 2/ Study on the (x,t) correlation of the GPDs (in coll. with M. Vanderhaeghen, A. Radyushkin & M. Polyakov)

  11. GPDs in impact parameter space (Belitsky) y z x The GPDs contain information on the longitudinalAND transversedistributions of the partons in the nucleon (femto-graphy of the nucleon) 3-D picture of the nucleon

  12. evaluate for ξ = 0 : model and LOW -t ( -t < 1 GeV2 ) : Regge model Goeke, Polyakov, Vanderhaeghen (2001) Regge trajectory : valence model for E t = 0 : t ≠ 0 : 2 free parameters : a’1,a’2 Fit 4 form factors : G E,Mp,n GPDs : t dependence ( small –t )

  13. 1 0 proton & neutron charge radii r 21,p =-6a’ lnx(euuv+eddv)dx F1u = uv(x)1/(x a’t)dx GPV Regge model experiment Regge slope

  14. proton electromagnetic form factors GPV Regge model forward parton distributions atm2 = 1 GeV2 (MRST2002 NNLO)

  15. neutron electromagnetic form factors GPV Regge model

  16. GPDs : t dependence ( large –t ) 1/ exp(- α΄ t lnx) -> exp(- α΄ (1 – x) t lnx) if q(x)->(1-x)n then FF->1/t(n+1)/2(Drell-Yan-West relation) M. Burkardt (2002) 2/ Large x behavior of E should be different from H : extra (1-x) power hq for q(x) modified Regge model : M.G., Polyakov, Radyushkin, Vanderhaeghen (2004) F1(t)->1/t2, F2(t)->1/t4 (t>>) Hq(x,0,t)=q(x)x-a t=q(x)e-a t ln(x) Large t power behavior is fixed by large x (->1) behavior if q(x) ~ (1-x)n then FF->1/t(n+1)

  17. proton electromagnetic form factors GPRV modified Regge model GPV Regge model a’ = 1.105 GeV-2 h u= 1.713 h d= 0.566

  18. neutron electromagnetic form factors GPRV modified Regge model GPV Regge model

  19. proton Dirac & Pauli form factors GPRV modified Regge model GPV Regge model

  20. b x (fm)

  21. N -> Δtransition form factors in large Nc limit GPRV modified Regge model GPV Regge model

  22. quark contribution to proton spin with M1 : valence models for eq(x) : M2 :

  23. orbital angular momentum carried by quarks evaluated at μ2 = 2.5 GeV2

  24. Summary Generalized Parton Distributions (GPDs) x-tcorrelations andnucleon form factors 3 parameters (a’,hu,hd) GPDs describe all existing data (GE,Mp,n) spin of nucleon / lattice QCD

  25. The actors

  26. « DES » in the world JLab(Ee=6 GeV):CLAS/Hall B(2001+2005) and Hall A(2004) HERA (Ee=27 GeV) :HERMES and ZEUS/H1(up to 2006) CERN (Em=200 GeV) :COMPASS(2007 ?)

  27. Bethe-Heitler g e’ e’ e g e g* g* p p’ p p’ The epa epg process DVCS e’ e g g* p p’ GPDs

  28. Energy dependence BH DVCS Calculation (M.G.&M.Vanderhaeghen)

  29. Bethe-Heitler g e’ e’ e g e g* g* p p’ p p’ Interference between the 2 processes : if the electron beam is polarised => beam spin asymmetry The epa epg process DVCS e’ e g g* p p’ GPDs

  30. First observations of DVCS charge asymmetry (HERMES) Magnitude and Q2 dependence of DVCS X-section (H1/ZEUS) All in basic agreement with theoretical predictions First experimental signatures DVCS First observations of DVCS beam asymmetries CLAS HERMES Phys.Rev.Lett.87:182002,2001

  31. 0.15 < xB< 0.4 1.50 < Q2 < 4.5 GeV2 -t < 0.5 GeV2 PRELIMINARY PRELIMINARY 5.75 GeV data(H. Avakian & L. Elhouadrhiri) CLAS/DVCS at 4.8 and 5.75 GeV PRELIMINARY GPD based predictions (BMK) 4.8 GeV data(G. Gavalian)

  32. Mesons σL(ep->epr) ρ γ*L Regge (Laget) Handbag diagram calculation (frozen as) can account for CLAS and HERMES data on σL(ep->epr) W=5.4 GeV GPD (MG-MVdh) Q2(GeV2) CLAS 4.2 GeV data(C. Hadjidakis, hep-ex/0408005) HERMES (27GeV) A. Airapetian et al., EPJC 17

  33. 1 0 proton & neutron charge radii r 21,p =-6a’ lnx(euuv+eddv)dx F1u = uv(x)1/(x a’t)dx GPV Regge model experiment Regge slope

  34. Trans. Mom. of partons Pion cloud F (t), G (t) k 1,2 A,PS « D-term » 0 <x > GPDs F(z) DDs t=0 -1 <x > q(x),D q(x) 1 <x > J R (t),R (t) q A V

  35. g* t g,M,... x~xB x /2 2 t=(p-p ’) x= B 1-x /2 x B p p’ x = xB ! ds 1 1 2 q q 2 2 H (x,x,t,Q ) E (x,x,t,Q ) dx dx +…. ~ A +B 2 dQ d x dt x-x+ie x-x+ie B -1 -1 Deconvolution needed ! x : mute variable ~ ~ H,E,H,E Hq(x,x,t) but only xand t accessible experimentally

  36. Compton Scattering “DVCS” (Deep Virtual Compton Scattering)

  37. z 0 1 0 1 GPDs probe the nucleon at amplitude level DIS : DES : x x x+x x-x p p’ p p’ H(x,x)~<p|F(x-x)F(x+x)|p ’> q(x)~<p|F(x)F(x)|p ’> x+x x-x x+x x-x x<x : x>x : p’ p p’ p z

  38. y (Belitsky et al.) y Parton Distribution z x Longitudinalmomentum distribution (no information on the transverse localisation) Form Factors z x Transverse localisation of the partons in the nucleon (independentlyof their longitudinal momentum)

  39. [s(x)-s(x)]dx=0 1 1 -1 -1 Nucleon strangeness : F1s _ _ But : F1s (t)= [s(x)-s(x)]/ (x a’t)dx=0 /

More Related