1 / 41

II. Generalized Parton Distributions (GPDs)

II. Generalized Parton Distributions (GPDs). Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz. HANUC, Jyväskylä, August 25-29, 2008. Outline : GPDs. 1) link of FF to Generalized Parton Distributions : nucleon “tomography” 2) GPDs and spin of nucleon

patty
Télécharger la présentation

II. Generalized Parton Distributions (GPDs)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. II. Generalized Parton Distributions (GPDs) MarcVanderhaeghen Johannes Gutenberg Universität, Mainz HANUC, Jyväskylä, August 25-29, 2008

  2. Outline : GPDs 1) link of FF to Generalized Parton Distributions : nucleon “tomography” 2) GPDs and spin of nucleon 3) Hard exclusive processes : DVCS, …

  3. Generalized Parton Distributions : yield 3-dim quark structure of nucleon Burkardt (2000,2003) Belitsky,Ji,Yuan (2004) Elastic Scattering transverse quark distribution in coordinate space DIS longitudinal quark distribution in momentum space DES (GPDs) fully-correlated quark distribution in both coordinate and momentum space

  4. * Q2 >> t = Δ2 x + ξ x - ξ P - Δ/2 P + Δ/2 GPD (x, ξ ,t) Generalized Parton Distributions low –t process : -t << Q2 Δ+ = - (2 ξ) P+ light-cone dominance, nμ(1, 0, 0, -1) / (2 P+)

  5. Δ P - Δ/2 P + Δ/2 known information on GPDs forward limit : ordinaryparton distributions unpolarized quark distr polarized quark distr : do NOT appear in DIS new information first moments : nucleonelectroweak form factors Dirac Pauli axial ξ independence : Lorentz invariance pseudo-scalar

  6. x +1 -1 -ξ 0 ξ GPDs : x and ξdependence forward parton distr Hu (x,ξ,0) x + ξ x - ξ quark distribution anti-quark distribution q q distribution amplitude

  7. Why GPDs are interesting Unique tool to explore the internal landscape of the nucleon : 3D quark/gluon imaging of nucleon Access to static properties : constrained (sum rules) by precision measurements of charge/magnetization orbital angular momentum carried by quarks

  8. GPDs : 3D quark/gluon imaging of nucleon Fourier transform of GPDs : simultaneous distributions of quarks w.r.t. longitudinal momentum x P and transverse positionb theoretical parametrization needed

  9. GPDs : t dependence modified Regge parametrization : Guidal, Polyakov, Radyushkin, Vdh (2004) Input : forward parton distributions atm2 = 1 GeV2 (MRST2002 NNLO) Drell-Yan-West relation : exp(- α΄ t ) -> exp(- α΄ (1 – x) t) : Burkardt (2001) parameters : regge slopes : α’1 = α’2 determined from rms radii determined from F2 / F1 at large -t future constraints : moments from lattice QCD

  10. proton & neutron charge radii Regge model modified Regge model experiment consistent with slopes of meson Regge trajectories ( ~ 0.9 GeV-2 ) Regge slope

  11. connection large Q2 of FF <-> large x of GPD at large Q2 : integral dominated by maximum of f(x,Q2), remainder region is exp. suppressed (method of steepest descent) f(x,Q2) reaches maximum for : “Drell-Yan-West” relation for PDF/GPD : at large Q2 : I is dominated by its behavior around x -> 1

  12. electromagnetic form factors PROTON NEUTRON world data (2006) modified Regge GPD parameterization 1 : Regge slope -> protonDirac (Pauli) radius 2, 3 :large x behavior of GPD Eu, Ed ->large Q2 behavior of F2p, F2n 3-parameter fit ηu = 1.713,ηd = 0.566 Guidal, Polyakov, Radyushkin, Vdh (2005) also Diehl, Feldmann, Jakob, Kroll (2005)

  13. scaling behavior of N and N -> Δ F.F. PQCD N N, Δ + collinear quarks F1p ~ 1/Q4 F2p / F1p ~ 1/Q2 GM* ~ 1/Q4 GPD modified Regge model Guidal, Polyakov, Radyushkin, Vdh (2005)

  14. GPDs : 3D quark/gluon imaging of nucleon Fourier transform of GPDs : simultaneous distributions of quarks w.r.t. longitudinal momentum x P and transverse positionb

  15. GPDs : transverse image of the nucleon (tomography) Hu(x, b? ) x Guidal, Polyakov, Radyushkin, Vdh, PRD 72, 054013 (2005) b?(fm)

  16. Moments of flavor-NS GPDs Lattice results : m = 740 MeV x b (fm) LHPC/SESAM Decrease slope : decreasing transverse size as x -> 1Burkardt -T2

  17. lattice QCD for moment of PDFs : present state-of-the-art full lattice QCD : domain wall valence quarks, 2+1 flavor staggered sea quarks LHPC (2007) Ratio: EXPERIMENT / Lattice Lattice (normalized to one) isovector quantities u - d (no disconnected contributions)

  18. y3 Handbag (bilocal) operator : new way to probe the nucleon Y- y0 y 0 generalized probe ( Y ≈ 0 ) ( W±, Z0 ) probe spin 2 (graviton) probe electroweak form factors energy-momentum form factors

  19. Δ P - Δ/2 P + Δ/2 Energy momentum form factors G nucleon in external classical gravitational field G couples toenergy-momentum tensor Gordon identity

  20. Momentum sum rule

  21. Momentum sum rule (cont.) Total system : energy-momentum conservation A(0) = 1 Physical interpretation in terms of : quarks : Aq(0) Aq(0) + Ag(0) = 1 & gluons : Ag(0)

  22. Angular momentum sum rule consider N in rest frame : Pμ (M,0,0,0) Sμ (0,0,0,1)

  23. Angular momentum sum rule (cont.) M 0 in rest frame 2 M

  24. Angular momentum sum rule (cont.) Total system : angular momentum conservation A(0) + B(0) = 1 B(0) = 0 Physical interpretation in terms of quarks & gluons ½ = Jq + Jg = ½ ΔΣ + Lq + Jg ½ΔΣ Lq

  25. Tμν form factors in terms of GPDs of both lhs and rhs

  26. Δ P - Δ/2 P + Δ/2 Energy momentum form factors /spinof nucleon G nucleon in external classical gravitational field G couples toenergy-momentum tensor link to GPDs : X. Ji (1997) SPIN sum rule

  27. quark contribution to proton spin X. Ji (1997) with parametrizations for E q : GPD : based on MRST2002 μ2 = 2 GeV2 lattice : full QCD, no disconnected diagrams so far

  28. orbital angular momentumcarried by quarks : solving thespin puzzle with Ji (1997) evaluated at μ2 = 2.5 GeV2

  29. Deeply Virtual Compton Scattering * Q2 large t = Δ2 low –t process : -t << Q2 + diagram with photons crossed x + ξ x - ξ P - Δ/2 P + Δ/2 GPD (x, ξ ,t)

  30. DVCS (cont.) twist-2 DVCS amplitude independent of Q SCALING ! DVCS amplitude is complex : imaginary part -> x = ξ Q2 , ξ, and t are kinematic variables with variable x is integrated over ( x ≠ xB ! ) DVCS amplitude is sensitive to GPDs weighted with coefficient functions

  31. DVCS : beam spin asymmetry ALU = (BH) * Im(DVCS) * sin Φ Bethe-Heitler DVCS Q2 = 1 – 1.5 GeV2 , xB = 0.15 – 0.25, -t = 0.1 - 0.25 GeV2 Q2 = 2.6 GeV2 , xB = 0.11, -t = 0.27 GeV2 JLab/CLAS (2001) HERMES (2001) twist-2 + twist-3 : Kivel, Polyakov, Vdh (2000)

  32. Bethe-Heitler DVCS on proton DVCS JLab/Hall A @ 6 GeV(2006) GPDs Difference of polarized cross sections Q2 ≈ 2 GeV2 xB = 0.36 Unpolarized cross sections also JLab/CLAS, HERMES, H1 / ZEUS

  33. DVCS on neutron 0 because F1(t) is small 0 because of cancelation of u and d quarks n-DVCSgives access to the least known and constrained GPD,E JLab /Hall A (E03-106) : preliminary data

  34. DVCS : target spin asymmetry proton JLab/CLAS mainly sensitive to GPD calculation : Vdh, Guichon, Guidal (1999)

  35. Hard electroproduction of mesons (ρ0,± , ω , φ, π, …) M * TH GPDs hard scattering amplitude Factorization theorem shown for longitudinal photon Collins, Frankfurt, Strikman (1997)

  36. Meson acts as helicity filter longitudinally pol. Vector meson PseudoScalar meson M M ± TH TH Vector meson : accesses unpolarized GPDs H and E ~ ~ PseudoScalar meson : accesses polarized GPDs H and E

  37. Hard electroproduction of vector mesons (ρ0,± , ω , φ) amplitude for longitudinally polarized vector meson leading (1 gluon exchange) amplitude depends on αsgoes as 1/Q dependence on meson distribution amplitudeΦV

  38. Flavor decomposition of GPDs H and E ρ0 ρ± ω

  39. Hard electroproduction of mesons : target normal spin asymmetry lepton plane hadron plane in leading order (in Q)2 observables Asymmetry : Target polarization normal to hadron plane

  40. Hard electroprod. of vector mesons : target normal spin asymmetry A GPD H B GPD E unpolarized cross section linear dependence on GPD E ratio : less sensitive to NLO and higher twist effects sensitivity to Ju and Jd measure of TOTAL angular momentum contribution to proton spin

  41. L=1035cm-2s-1 2000hrs sL dominance DQ2 =1 Dt = 0.2 -t = 0.5GeV2 exclusive 0 prod. with transverse target 2D (Im(AB*))/p T A~ (2Hu +Hd) AUT = - r0 |A|2(1-x2) - |B|2(x2+t/4m2) - Re(AB*)2x2 B~ (2Eu + Ed) AUT Q2 = 5GeV2 r0 Asymmetry depends linearly on the GPD E, which enters Ji’s sum rule. K. Goeke, M.V. Polyakov, M. Vdh (2001) xB

More Related