1 / 35

DVCS & Generalized Parton Distributions

DVCS & Generalized Parton Distributions. MENU04, 02/09/04. M. Guidal, ORSAY. Compton Scattering. “DVCS” (Deep Virtual Compton Scattering). }. f. f ,. 2. 1. 2. 2. Bjorken scaling (Q >1 GeV ) : pointlike objects. : spin ½ objects. 1/2 momentum carried by quarks.

zeroun
Télécharger la présentation

DVCS & Generalized Parton Distributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DVCS & Generalized Parton Distributions MENU04, 02/09/04 M. Guidal, ORSAY

  2. Compton Scattering “DVCS” (Deep Virtual Compton Scattering)

  3. } f f , 2 1 2 2 Bjorken scaling (Q >1 GeV ) : pointlike objects : spin ½ objects 1/2 momentum carried by quarks Bjorken Sum Rule : 1/4 spin carried by quarks (INCLUSIVE) DEEP INELASTIC ) e’ ( ( ) e g q ( ) p

  4. DEEP INELASTIC e’ e g,p,w,r,h,... g } New generation of machines : - high energy - high duty cycle + spectrometers : - large acceptance - high resolution p p’ accessible now ! e’ g,p,w,r,h,... e g* x t x ~ ~ H,E,H,E p p’ ~ ~ (EXCLUSIVE) Final state constrained : s

  5. Large Q2, small t Vector Ms : H,E ~ ~ PS Ms : H,E g : sT lead. twist Mesons : sL H,E(x,x,t) H,E(x,x,t) _ _ ~ ~ {g-[Hq(x,x,t)N(p’)g+N(p) + Eq(x,x,t)N(p’)is+kDkN(p)] 2M _ _ ~ ~ +g5 g-[Hq(x,x,t)N(p’)g+ g5 N(p) +Eq(x,x,t)N(p’)g5D+N(p)]} 2M GPD formalism (Ji, Radyushkin, Collins, Strikman, Frankfurt) t g* g,M,... -2x x+x x-x p’(=p+D) p

  6. “Ordinary” parton distributions Elastic form factors Ji’s sum rule 2Jq =  x(H+E)(x,ξ,0)dx x x (nucleon spin)  H(x,ξ,t)dx = F(t)( ξ) H(x,0,0) = q(x), H(x,0,0) = Δq(x) ~ GPDs are not completely unknown t γ, π, ρ, ω… -2ξ x+ξ x-ξ ~ ~ H, H, E, E (x,ξ,t)

  7. y (Belitsky et al.) y Parton Distribution z x Longitudinalmomentum distribution (no information on the transverse localisation) Form Factors z x Transverse localisation of the partons in the nucleon (independentlyof their longitudinal momentum)

  8. Generalized Parton Distributions y z x The GPDs contain information on the longitudinalAND transversedistributions of the partons in the nucleon (femto-graphy of the nucleon) 3-D picture of the nucleon

  9. x+x x-x x+x x-x x<x : x>x : p’ p p’ p z z 0 1 0 1 GPDs probe the nucleon at amplitude level DIS : DES : x x x+x x-x p p’ p p’ H(x,x)~<p|F(x-x)F(x+x)|p ’> q(x)~<p|F(x)F(x)|p ’>

  10. Trans. Mom. of partons Pion cloud F (t), G (t) k 1,2 A,PS « D-term » 0 <x > GPDs F(z) DDs t=0 -1 <x > q(x),D q(x) 1 <x > J R (t),R (t) q A V

  11. ~ ~ H,E,H,E(x,x,t): GPDs H E q spin average ~ ~ H E q spin diff. p spin no flip p spin flip ~ ~ H,E,H,E Access experimentally the GPDs through the measurement of the angular and energy distributions of EXCLUSIVE reactions e’ g,r,w,h,p,... e g q q’ p p’

  12. x /2 2 t=(p-p ’) x= B 1-x /2 B x = xB ! ds 1 1 2 q q 2 2 H (x,x,t,Q ) E (x,x,t,Q ) dx dx +…. ~ A +B 2 dQ d x dt x-x+ie x-x+ie B -1 -1 Deconvolution needed ! x : mute variable ~ ~ H,E,H,E Hq(x,x,t) but only x and t accessible experimentally g* t g,M,... x~xB x p p’

  13. GPD and DVCS (at leading order:) Beam or target spin asymmetry contain only ImT, therefore GPDs at x = x and -x Cross-section measurement and beam charge asymmetry (ReT) integrate GPDs over x (M. Vanderhaeghen)

  14. DES: finite Q2 corrections (real world ≠ Bjorken limit) GPD evolution O (1/Q) O(1/Q2) Dependence on factorization scale μ : Kernel known to NLO (here for DVCS) • Gauge fixing term • Twist-3: contribution from γ*L may be expressed in terms of derivatives of (twist-2) GPDs. • - Other contributions such as small (but measureable effect). • “Trivial” kinematical corrections • Quark transverse momentum effects (modification of quark propagator) • Other twist-4 ……

  15. The actors

  16. « DES » in the world JLab(Ee=6 GeV):CLAS/Hall B(2001+2005) and Hall A(2004) HERA (Ee=27 GeV) :HERMES and ZEUS/H1(up to 2006) CERN (Em=200 GeV) :COMPASS(2007 ?)

  17. Bethe-Heitler g e’ e’ e g e g* g* p p’ p p’ The epa epg process DVCS e’ e g g* p p’ GPDs

  18. Energy dependence BH DVCS Calculation (M.G.&M.Vanderhaeghen)

  19. Bethe-Heitler g e’ e’ e g e g* g* p p’ p p’ Interference between the 2 processes : if the electron beam is polarised => beam spin asymmetry The epa epg process DVCS e’ e g g* p p’ GPDs

  20. First observations of DVCS charge asymmetry (HERMES) Magnitude and Q2 dependence of DVCS X-section (H1/ZEUS) All in basic agreement with theoretical predictions First experimental signatures DVCS First observations of DVCS beam asymmetries CLAS HERMES Phys.Rev.Lett.87:182002,2001

  21. 0.15 < xB< 0.4 1.50 < Q2 < 4.5 GeV2 -t < 0.5 GeV2 PRELIMINARY PRELIMINARY 5.75 GeV data(H. Avakian & L. Elhouadrhiri) CLAS/DVCS at 4.8 and 5.75 GeV PRELIMINARY GPD based predictions (BMK) 4.8 GeV data(G. Gavalian)

  22. D.E.S.: an experimental challenge Missing mass MX2 ep  epX MAMI 850 MeV ep  epX Hall A 4 GeV • Resolution • Exclusivity • Luminosity γ π0 ep  epX CLAS 4.2 GeV are the key issues for this physics! N N+π ep  eγX HERMES 28 GeV

  23. g e’ A typical DVCS event in CLAS p

  24. ep→epX (CLAS at 4.2 GeV) : X = γ or π0 ? Only 2-parameter fit: Ng and Np0 Ng

  25. Add EM calorimeter at forward angles Add solenoid Moller shield around target A typical epa epg event in CLAS e’ g p

  26. JLab/ITEP/ Orsay/Saclay/UVA collaboration Dynamical range : 50 MeV < Eg < 5 GeV(s~5%/sqrt(Eg)) Counting rates ~ 1 MHz Magnetic field environment : B~ 1 T ~400 PbWO4 crystals : ~10x10 mm2, l=160 mm (18 l’s) Read-out : APDs +preamps

  27. 0 mass peak σ 21 MeV (with online calibration)

  28. Projected results 60 days of beam time in spring’05 Experiment E01-113 : V. Burkert, L. Edouardrihi, M. Garçon, S. Stepanyan et al. Run March-May 2005 About 380 bins in f, xB, t

  29. Veto detector added n-DVCS : to the p-DVCS set-up DVCS in Hall A Experiment E00-110 : P. Bertin, C.E. Hyde-Wright, R. Ransome and F. Sabatié. To run mid-september • High Resolution Hall A spectrometer for electron detection • 100-channel scintillator array for proton detection • 132-block PbF2 electromagnetic calorimeter for photon detection • Detection of all 3 final-state particles ensures exclusivity Also HERMES & COMPASS

  30. Mesons σL(ep->epr) ρ γ*L Regge (Laget) Handbag diagram calculation (frozen as) can account for CLAS and HERMES data on σL(ep->epr) W=5.4 GeV GPD (MG-MVdh) Q2(GeV2) CLAS 4.2 GeV data(C. Hadjidakis, hep-ex/0408005) HERMES (27GeV) A. Airapetian et al., EPJC 17

  31. Deeply virtual ω production at 5.75 GeV (CLAS) Q2 from 1.6 to 5.6 GeV2 Ludyvine Morand’s thesis xB from 0.16 to 0.70 ω peak in MM[epX] for (Q2,xB) bins Analysis of ω polarizationfrom ep → epπ+π-X configurations (for the first time for this channel above Q2 ~ 1 GeV2) Evidence for unnatural parity exchange  0 exchange dominating even up to large Q2 (see also J.-M. Laget, hep-ph/0406153) SCHC does not seem to hold → not possible to extract σL handbag diagram estimated to contribute only about 1/5 of measured cross sections ω more challenging/difficult channel to access GPD s

  32. Extensions RCS : gp->gp (intermediate t)(Radyushkin, Dihl, Feldman, Jakob, Kroll) tDVCS : gp->pg* (e+e-) (Berger, Pire, Diehl,...) tDDVCS : ep->epg* (e+e-) (M.G., Vanderhaeghen, Belitsky, Muller,...) sDDVCS : ep->ep (Vanderhaeghen, Gorschtein,...) _ IDVCS : pp->gg (Freund, Radyushkin,Shaeffer,Weiss) DVCS : ep->eDg(Frankfurt, Polyakov, Strikman, Vanderhaeghen) N-DVCS : eA->eAg (Scopetta, Pire, Cano, Polyakov, Muller, Kirschner, Berger....) Hybrids, pentaquarks,... (Pire, Anikin,Teryaev,...)

  33. THEORY : Q2 evolution worked out to NLO, twist-3 contributions to DVCS estimated, first lattice calculations have been recently published,... (f (x), g (x), F (t), G (t), F(z), pion cloud,…) 1 1 1 A Further higher twists –mesons–, deconvolution issues,.... EXPERIMENT : First experimental signatures very encouraging Up to 2005: definitely sign the validity of the approach (factorization, scaling,...) Beyond : systematically measure and extract the GPDs (JLab@11 GeV) Summary The most complete information on the structure of the nucleon : GPDs

More Related