1 / 52

Guy W. Sewell, Ph.D. Professor of Environmental Health Sciences Robert S. Kerr Endowed Chair

Cleanup of Small Dry Cleaner Using Multiple Technologies: Sages Dry Cleaner Site NATO/CCMS Pilot Study Meeting, June 2006. Guy W. Sewell, Ph.D. Professor of Environmental Health Sciences Robert S. Kerr Endowed Chair East Central University. Site Size Issues.

Télécharger la présentation

Guy W. Sewell, Ph.D. Professor of Environmental Health Sciences Robert S. Kerr Endowed Chair

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cleanup of Small Dry Cleaner Using Multiple Technologies: Sages Dry Cleaner SiteNATO/CCMS Pilot Study Meeting, June 2006 Guy W. Sewell, Ph.D. Professor of Environmental Health Sciences Robert S. Kerr Endowed Chair East Central University

  2. Site Size Issues Small Urban Sites are more likely to require source zone treatment to meet remedial time limitations and coordinated remedial approaches to address both source zone and dissolved phase contaminants.

  3. Field Evaluation of the Solvent Extraction Residual Biotreatment (SERB) Technology • Project Team • USEPA-NRMRL-SPRD-Ada • Guy W. Sewell, PI, Biological Processes • Lynn Wood, Physical Processes • Susan Mravik, Site Coordinator • Ann Keeley, Norma Duran (Lab Studies) • Site Contractor • Levine-Fricke Recon • UF • Mike Annable, PI Solvent Extraction • MSU • James M. Tiedje, PI Microbial Ecology • Shannon Flynn, Rebekah Helton, Frank Loeffler (Lab Studies) • Project Funding- SERDP(FIBRC-WES), EPA-TIO, State of Florida

  4. OBJECTIVE • Integrate Remediation Technologies into a Treatment Train for Comprehensive Site Restoration • Target DNAPL Source Zone • Decrease Remediation Costs • LIMITATIONS • Geology • Source Zone Delineation • Time (?)

  5. CONTAMINANT OF INTEREST: Tetrachloroethene (PCE) TECHNOLOGICAL BASIS: Cosolvent Extraction (Ethanol) Biodegradation (Reductive Dechlorination)

  6. PCE Spill Residual & Separate Phase Material DNAPL GW Flow

  7. GW Flow Cosolvent Extraction Injection Well Ethanol Flush Recovery Well 90%+ Mass Removal

  8. GW Flow Residual Contaminants Restoration?, Risk Reduction? PCE Ethanol Mixed

  9. GW Flow Bioremediation FNA, Dissolution < Assimilative Capacity Bioactive Zone

  10. Why SERB (Source Control) • Remove more mobile fraction of DNAPL, lower dissolved concentrations. Reduce time/distance needed to meet GW quality objectives. • Activate reductive bio-transformations in high redox environments. • Insure supply of e- donor, accelerate process and reduce uncertainty. • Regulatory requirement.

  11. PCE No evidence X Biotransformations for Chloroethenes but - G D No evidence X TCE but - D G CO 2 1,1-DCE trans -DCE -DCE cis Some field evidence Reductive Transformation Vinyl Chloride CO 2 Oxidative Catabolism Ethene Ethane CO 2

  12. - NO 3 = SO 4 3+ Fe HCO 3 R- Cl x + N (NH ) 4 2 H S 2 2+ Fe CH 4 R- Cl x -1 Reduced Electron Acceptors SEWELL, '95 ANAEROBIC OXIDATION-REDUCTION Electron Acceptors Electron Donors Organic Compound - , H EtOH 2 Partially Oxidized Compound(s) acetate CO 2

  13. Chloroethene Sites Plume TypeBio-attenuationStable • Parent Dominant No Yes (PCE or TCE) • VC/cis DCE Yes No Dominant • Ethene Forming Yes ?

  14. Field Test of the SERB TechnologySages Dry Cleaner SiteResults and Discussion

  15. Field Test Table of Events • July, 1998 Site Characterization, Ground Water Monitoring, & Partitioning Tracer Test • Aug. 9-15, 1998 Ethanol Flush (9000 gallons) • Aug. 15, 1998 Partitioning Tracer Test Start Hydraulic Containment • Aug. 25, 1998 End Hydraulic Containment Ethanol < 10,000 mg/L

  16. 0 ft. 20 ft. 40 ft. 60 ft. 80 ft. Sage’s Dry Cleaner SiteJacksonville, Florida ASPHALT CONCRETE SLAB MW-512 MW-514 MW-513 C3 C4 MW-505 RW-003 RW-004 C2 RW-005 MW-506 RW-002 C1 MW-509 DNAPL MW-510 AREA RW-007 RW-006 MW-508 MW-511 MW-507

  17. Pre-Cosolvent Flush Site Characterization • Aerobic Conditions • Low levels of daughter products (TCE) • DNAPL contamination identified at 26 to 31 ft. bgs

  18. Figure 1. PCE and ethanol concentrations during co-solvent flood at Sages Site in recovery well RW-001.

  19. Cosolvent Flush Performance Pre-Cosolvent Flush Partitioning Tracer 44.3 L (PCE) Post-Cosolvent Flush Partitioning Tracer 13.9 L (PCE) Estimated Recovery Based on Partitioning Tracer Tests 30.4 L (PCE) (70%) Mass Recovery Based on PCE Concentrations in Recovery Wells 41.5 L (PCE)

  20. 20 37.5 18 16 37 14 12 36.5 10 Monthly Precipitation (inches) Elevation (feet) 8 36 6 4 35.5 2 0 35 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Date 0.009 0.009 0.008 0.003 0.006 0.003 0.003 - 0.001 0.002 0.006 0.002 0.002 0.004 0.001 0.001 0.001 0.001 0.0002 0.001 Ground Water (Avg) Canal

  21. 350 mM 300 mM 250 mM 200 mM 150 mM 100 mM 50 mM 0 mM Ethanol 350 mM = 16 g/L = 1.6 %

  22. 350 mM 300 mM 250 mM 200 mM 150 mM 100 mM 50 mM 0 mM Ethanol 350 mM = 16 g/L = 1.6 %

  23. 100 mM 75 mM 50 mM 25 mM 0 mM Ethanol 1000 mM = 4.6 g/L = 0.46 %

  24. 100 mM 75 mM 50 mM 25 mM 0 mM Ethanol 1000 mM = 4.6 g/L = 0.46 %

  25. 500 uM 450 uM 400 uM 350 uM 300 uM 250 uM 200 uM 150 uM 100 uM 50 uM 0 uM PCE 500 uM = 83 mg/L

  26. 500 uM 450 uM 400 uM 350 uM 300 uM 250 uM 200 uM 150 uM 100 uM 50 uM 0 uM PCE 500 uM = 83 mg/L

  27. 500 uM 450 uM 400 uM 350 uM 300 uM 250 uM 200 uM 150 uM 100 uM 50 uM 0 uM PCE 500 uM = 83 mg/L

  28. 500 uM 450 uM 400 uM 350 uM 300 uM 250 uM 200 uM 150 uM 100 uM 50 uM 0 uM PCE 500 uM = 83 mg/L

  29. 100 uM 90 uM 80 uM 70 uM 60 uM 50 uM 40 uM 30 uM 20 uM 10 uM 0 uM TCE 100 uM = 13 mg/L

  30. 100 uM 90 uM 80 uM 70 uM 60 uM 50 uM 40 uM 30 uM 20 uM 10 uM 0 uM TCE 100 uM = 13 mg/L

  31. 100 uM 90 uM 80 uM 70 uM 60 uM 50 uM 40 uM 30 uM 20 uM 10 uM 0 uM TCE 100 uM = 13 mg/L

  32. 175 uM 150 uM 125 uM 100 uM 75 uM 50 uM 25 uM 0 uM cis-DCE 175 uM = 17 mg/L

  33. 175 uM 150 uM 125 uM 100 uM 75 uM 50 uM 25 uM 0 uM cis-DCE 175 uM = 17 mg/L

  34. 175 uM 150 uM 125 uM 100 uM 75 uM 50 uM 25 uM 0 uM cis-DCE 175 uM = 17 mg/L

  35. 2.0 uM 1.8 uM 1.6 uM 1.4 uM 1.2 uM 1.0 uM 0.8 uM 0.6 uM 0.4 uM 0.2 uM 0.0 uM Vinyl Chloride 2.0 uM = 125 ug/L

  36. 2.0 uM 1.8 uM 1.6 uM 1.4 uM 1.2 uM 1.0 uM 0.8 uM 0.6 uM 0.4 uM 0.2 uM 0.0 uM Vinyl Chloride 2.0 uM = 125 ug/L

  37. 2.0 uM 1.8 uM 1.6 uM 1.4 uM 1.2 uM 1.0 uM 0.8 uM 0.6 uM 0.4 uM 0.2 uM 0.0 uM Vinyl Chloride 2.0 uM = 125 ug/L

  38. 0.5 uM 0.4 uM 0.3 uM 0.2 uM 0.1 uM 0.0 uM Ethene 0.5 uM = 14 ug/L

  39. 2250 uM 2000 uM 1750 uM 1500 uM 1250 uM 1000 uM 750 uM 500 uM 250 uM 0 uM Chloride 2250 uM = 80 mg/L

  40. 1600 uM 1400 uM 1200 uM 1000 uM 800 uM 600 uM 400 uM 200 uM 0 uM Acetic Acid 1600 uM = 96 mg/L

  41. 900 uM 800 uM 700 uM 600 uM 500 uM 400 uM 300 uM 200 uM 100 uM 0 uM Sulfate 900 uM = 86 ug/L

  42. 1100 uM 1000 uM 900 uM 800 uM 700 uM 600 uM 500 uM 400 uM 300 uM 200 uM 100 uM 0 uM Methane 1100 uM = 18 mg/L

  43. 1100 uM 1000 uM 900 uM 800 uM 700 uM 600 uM 500 uM 400 uM 300 uM 200 uM 100 uM 0 uM Methane 1100 uM = 18 mg/L

  44. SUMMARY Solvent Extraction: 41.5 L PCE Removed (Mass Recovery) ~70 % PCE Removed (Partitioning Tracer) PCE Daughter Product Formation TCE, cis-DCE, VC, ethene, methane (?) Change in Geochemistry Dissolved Oxygen, Sulfate, and Redox Indications of Biological Activity Methane, Volatile Fatty Acid, and Hydrogen

  45. Partial Oxidation of Ethanol: CH3CH2OH + H2O -----> CH3COOH + 2 H2 Complete Oxidation of Ethanol: CH3CH2OH + 3H2O -----> 2CO2 + 6 H2 Dechlorination of PCE: C2ClX + H2 -----> C2Clx-1 + H+ + Cl- Complete Dechlorination of PCE Requires 1-2 Moles of Ethanol (excluding competing processes)

  46. Source Area = 40 ft. diameter X 5 ft. depth Assume Porosity = 0.4 Pore Volume = 70,000 L Concentrations: Average Ethanol = 8,000 mg/L Average PCE = 50,000 ug/L Total Mass: Ethanol - 570 Kg or 12,350 Moles PCE - 3.6 Kg or 21.5 Moles Theoretically, we have >250 times the amount of ethanol present for complete dechlorination of the estimated remaining PCE. 38.8 times the amount needed to degrade the 157.1 moles of the (estimated) PCE in the source zone (136 moles residual PCE + 21.1 moles dissolved PCE). While this estimate assumes no competing terminal oxidation processes such as methanogenesis or sulfate reduction, an efficiency greater that 2% would still meet the theoretical demand.

  47. cis-DCE Formation 70000 60000 50000 C2 2 2 2 R = 0.61 R R = 0.68 = 0.49 y = 52.7 x C3 Concentration (ug/L) 40000 MW-510 30000 MW-514 y = 10.3 x 20000 RW-007 10000 y = 1.1 x 0 -200 0 200 400 600 800 1000 1200 Time (Days)

  48. First Order Degradation Rates (Based on Total Mass) Ethanol-0.33 year-1 (R2 0.53) t ½ = 2.1 yrs PCE-0.56 year-1 (R2 0.82) t ½ = 1.2 yrs cis-DCE 0 .81 year-1 (R2 0.82) t ½ = 0.9 yrs

  49. Currently the system remains biologically active and the dechlorination products are accumulating. • High levels of dissolved methane and hydrogen have also been detected in the treatment zone. • The maximum and minimum observed rate of dechlorination (based on cis-DCE production) are approximately 43.6 and 4.2 ug/liter/day, respectively. • These rates can be extrapolated to a multi-step, concurrent, dechlorination process to predict that the dissolved phase PCE could be removed in 3 to 30 years, and that the total source zone PCE could be transformed in 24 to 240 years.

More Related