1 / 29

Раздел IV Методи, процеси и съоръжения за пречистване на битови отпадъчни води

Раздел IV Методи, процеси и съоръжения за пречистване на битови отпадъчни води. Тема 17 Методи, съоръжения и технологични схеми за отстраняване на азот Физични методи ( striping /отдухване) Химични методи (окисление ) Физико-химични методи (йонообмен)

audra
Télécharger la présentation

Раздел IV Методи, процеси и съоръжения за пречистване на битови отпадъчни води

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Раздел IVМетоди, процеси и съоръжения за пречистване набитови отпадъчни води Тема 17 Методи, съоръжения и технологични схеми за отстраняване на азот • Физични методи (striping/отдухване) • Химични методи (окисление) • Физико-химични методи (йонообмен) • Биологични методи (нитрификация/денитрификация, SHARON/Anammox, NOx)

  2. Раздел IV. Тема 17Методи, съоръжения и технологични схеми за отстраняване на азот Форми на азота в отпадъчните води: • Неорганични съединения – около 2/3 от общото количество N • Амониеви йони, NH4+ • Амоняк, NH3 • Нитрати, NO3-,нитритиNO2-, около 0 – 3 % от общото количество N • Органични съединения – около 1/3 от общото количество N • Карбамид, CO(NH2)2 – около 50 - 90 % от органичните съединения • Белтъци – около 10 - 50 % от органичните съединения • Параметри за количествено определяне на N чрез химичен анализ • Общ азот по Kieldal – включва органичния азот, NH3иNH4+ • Неорганичен азот – включва NO2- и NO3- • Общ азот – сума от общия азот по Kieldal и неорганичния азот - NO2- и NO3-

  3. Раздел IV. Тема 17Методи, съоръжения и технологични схеми за отстраняване на азот 17. 1. Физични методи (striping/отдухване) Както е известно, между амониевите йони и амоняка във водна среда съществува динамично равновесие, зависещо от рН: При рН = 12 балансът се установява силно в ляво и продуктите на амонификацията са изцяло във формата на амоняк. При рН = 11,5 - 12 амонякът може да се отстрани чрез десорбцията му от водния разтвор във въздуха чрез т.н. отдухване (striping). Това се осъществява чрез барботаж на въздух през десорбционни колони с отпадъчна вода или чрез разпръскване на водата във въздушна среда в градирни.

  4. Раздел IV. Тема 1717. 1. Физични методи (striping/отдухване) Недостатъци на метода: • Необходимост от големи количества алкализиращи вещества (вар) • Необходимост от последващо използване на голямо количество киселина за неутрализация • Необходимост от използване на голямо количество въздух за отдухване на 1 m3(2000 – 3000 m3 въздух/m3вода) или голям обем на градирните • Непълно отстраняване на амоняка (практически не повече от 80 %)

  5. Раздел IV. Тема 17Методи, съоръжения и технологични схеми за отстраняване на азот 17.2. Химични методи (окисление) Окисление чрез хлориране Както е известно, във водна среда хлорът хидролизира до хипохлориста киселина: Амоният в отпадъчните води реагира с хипохлористата киселина при което се образуват хлорамини и азотен трихлорид, намиращи се в различно съотношение в зависимост от рН на средата и количеството на хипохлористата киселина: монохлорамин дихлорамин азотен трихлорид

  6. Раздел IV. Тема 1717.2. Химични методи (окисление) При Cl2 : NH4+ = 5 и рН = 5 преобладават монохлорамините (85 %), при рН = 9 преобладават дихлорамините (95%), а при рН < 3 се получава само азотен трихлорид (100 %). В присъствието на нереагирала хипохлориста киселина хлорамините се разпадат до молекулярен азот: или общо За да протекат напълно горните реакции, практически е необходимо да се осигури рН = 9, както и спазването на следното съотношение:

  7. Раздел IV. Тема 1717.2. Химични методи (окисление) Недостатъци на метода: • Хлорамините са канцерогенни, поради което хлорирането на отпадъчни води в ЕС не се поощрява • Необходимост от използване на голямо количество хлор за постигане на желания ефект • Необходимост от непрекъснато следене и поддържане на рН = 9 (допълнително реагентно стопанство с киселина и основа) • Необходимост от непрекъснато следене на остатъчния хлор и съответното му елиминиране • При наличие на феноли в отпадъчните води, след хлориране се образуват хлорфеноли, които имат остра неприятна (задушлива) миризма

  8. Раздел IV. Тема 17Методи, съоръжения и технологични схеми за отстраняване на азот 17.3. Физико-химични методи (йонообмен) Амониевите йони се отстраняват успешно от сравнително слабо концентрирани водни разтвори (NH4+ < 30 mg/l ) чрез йонообмен. В случая е много подходящ естествения (природен) анионит клиноптилолит от групата на зеолитите. У нас в Кърджалийски район се намира едно от най-големите световни находища на клиноптилолит с изключително високи сорбционни и йонообменни качества по отношение на NH4+. Отстраняването на амониевите йони от отпадъчните води се дължи на тяхното вграждане в йонната решетка - R на клиноптилолита, където те изместват натриевите йони:

  9. Раздел IV. Тема 1717.3. Физико-химични методи (йонообмен) Присъствието на други йони в разтвора (напр. – Са+2 ) влошават ефекта на отстраняване на NH4+, тъй като са негови конкуренти в йонообменния процес. След насищането на йонита с отстранените от разтвора йони, той се регенерира с наситен разтвор на CaCl2илиNaCl, чиито общ обем е около 10 - 30 пъти по-голям от този на филтърния пълнеж при промивна интензивност 4 l/s.m2. Отработеният промивен разтвор е с обем около 2,5 - 5 % от този на пречистената отпадъчна вода, но с 20 – 50 пъти по-голяма от нея концентрация на амониевите йони. Той подлежи на следващо третиране. Йонобменният процес за отстраняване на NH4+се реализира на практика в напорни йонобменни филтри, които имат конструкция, подобна на тази на напорните бързи пясъчни филтри, използвани при пречистване на природни води.

  10. Раздел IV. Тема 1717.3. Физико-химични методи (йонообмен) Основни технологични параметри на йонообменните филтри: • Зърнометричен състав на зеолитния филтърен пълнеж – 0,25 – 0,60 mm • Височина на филтърния слой – 1 – 1,5 m • Повърхностно хидравлично натоварване – 2 – 6 l/s.m2 • Работен (защитен) капацитет на филтърния пълнеж – обемът на пречистената вода за един цикъл е от 50 до 300 пъти по-голям от този на филтърния пълнеж в зависимост от рН, началната и крайната концентрация на амониевите йони Недостатъци на метода: • Необходимост от скъпо третиране на промивния разтвор • Възможно е механично задръстване на филтърния пълнеж със суспендирани вещества, ако те не са отстранени предварително • Йонообменният пълнеж се задръства с калциеви йони, които го компроментират • Къс защитен (работен) период и усложнено управление

  11. Раздел IV. Тема 17Методи, съоръжения и технологични схеми за отстраняване на азот Биохимични трансформации на азотните съединения: • Биохимична трансформация на карбамида (амонификация) • Биохимична трансформация на органичния азот (амонификация) • Чрез последователни биохимични реакции органичният азот се трансформира до амониев азот (полипептиди → амино-киселини → NH4+) • Биохимична трансформация на амония (нитрификация) • Биохимична трансформация на нитратите (денитрификация)

  12. Раздел IV. Тема 17Методи, процеси и съоръжения за пречистване набитови отпадъчни води 17.4. Биологични методи • Нитрификация / Денитрификация • Нови методи • Метод SHARON/Anammox • Метод NOx

  13. Раздел IV. Тема 1717.4. Биологични методи Нитрификация / Денитрификация Нитрификация I фаза: нитритификация (Nitrosomonas) II фаза: нитрификация (Nitrobacter) Технологични условия за протичане на процесите на нитрификация: • Възраст на биомасата θx > 8 – 12 d • Утайково натоварване Rу < 0,12 – 0,20 kg БПК5/kg СВ.d • Кислородна необходимост ORL = 4,57g O2/g [NH4+ -N] • Органичните вещества инхибират процесите

  14. Раздел IV. Тема 17 17.4. Биологични методи Денитрификация: Дефиниция: Анаеробно окисление на въглеродо-съдържащи органични вещества чрез нитрати като акцептори на електрони глюкоза Технологични условия за протичане на процеса денитрификация: • Теоретически необходимо съотношение ХПК : [NО3- -N]D ≥ 8,6 • Специфично количество на отделения кислород – 2,85 g O2/g [NО3- -N] • Процесът е анаеробен (безкислороден) • Участвуващите бактерии са хетеротрофи (Pseudomonas) • Разтвореният кислород над 0,1 mg/l инхибира процеса (при О2 = 0,2 mg/lскоростта му намалява 2 пъти а при О2 = 2 mg/lнамалява 10 пъти)

  15. Раздел IV. Тема 1717.4. Биологични методи Основни технологични схеми: • Биостъпало с последващо включена (по отношение на аеробния реактор) денитрификация (пост-денитрификация) • Биостъпало с предварително включена денитрификация (пред-денитрификация) • Каскаден реактор с предварително включена денитрификация • Реактор с едновремена (симултанна) нитрификация/денитрификация • Биостъпало с алтернативна нитрификация/денитрификация • Биостъпало с цикличен реактор (Sequencing Batch Reactor - SBR)

  16. Раздел IV. Тема 1717.4. Биологични методи Основни технологични схеми: Н – нитрификатор (аеробен реактор) ДН – денитрификатор (анокси реактор) ВУ – вторичен утаител АН – анаеробен реактор а., е. Биостъпало с последващо включена денитрификация б. Биостъпало с предварително включена денитрификация в. Реактор с едновременна (симултанна) нитрификация / денитрификация (в реактор тип “Carousel”) г. Биостъпало с алтернативна нитрификация / денитрификация д. Биостъпало с цикличен реактор (SBR) ж. Каскаден реактор с предварително включена денитрификация (Bardenpho) з. Биостъпало с едновременно отстраняване на азота и фосфора

  17. Раздел IV. Тема 1717.4. Биологични методи Технологична схема с едновременна (симултанна) нитрификация/денитрификация, реализирана чрез биореактор тип Carousel

  18. Q ANOX QNО3 AER QРУ ВУ QИАУ Q Раздел IV. Тема 1717.4. Биологични методиОсновни технологични схеми Биостъпало с предварително включена денитрификация Основни технологични зависимости: • Рециркулационноотношение за акт. утайки – nу • Рециркулационноотношение за нитратния поток – nN • Степен на денитрификация – ηD Ninc = pN .XРУ .QИАУ ; pN = 0,08 – 0,12 • Действително рециркулационно отношение – nN,д

  19. Раздел IV. Тема 1717.4. Биологични методи Нови технологии за биологично отстраняване на азот от отпадъчни води • SHARON (Single reactor for High Ammonium Removal Over Nitrite) • ANAMMOX (ANaerobic AMMonium OXidation) • Комбинирана система SHARON / ANAMMOX • NOx (с добавяне на газ – NO2 или NO в аеробни или анаеробни условия)

  20. Нови методи за отстраняване на азот от отпадъчни води Нитритификация (частична нитрификация) нитрификация денитрификация N2 NH4 75% O2 нитритификация 40% метанол Nitrosomonas Nitrosomonas NO2 NO2 инхибиране 25% O2 Nitrobacter 60% метанол NO3

  21. Нитритификация – основен процес във всички нови технологии за биологично отстраняване на азот Условия за инхибиране на Nitrobacter: • Висока температура – t0 = (30÷ 35)0 C • и кратък времепрестой – HRT = 1d 2. Ниско съдържание на О2 < 0.78 mg/l. 3. По-високи рН стойности: рН = 7.8 ÷ 8 (NH3 > 1mg/l) 4. При концентрация на нитрити: NO-2 > 20mg/l 5. В присъствието на газообразни азотни окиси - NO и NO2.

  22. Нови методи за отстраняване на азот от отпадъчни води Процеси в реактора Sharon • 75% по-малко въглерод за евентуална пост-денитрификация • 40% по-малко кислород необходим за окисление на азота нитрификация N2 NH4 пълна нитритификация 75% O2 NO2 инхибиране 25% O2 Nitrobacter NO3 частична нитритификация

  23. Нови методи за отстраняване на азот от отпадъчни води Технологични особености при реактора Sharon • 75% по-малко въглерод за евентуална пост-денитрификация • 40% по-малко кислород необходим за окисление на азота • Окисление на азота до нитрити от Nitrosomonas; • отмиване на Nitrobacter от системата; • кратък хидравличен времепрестой: 1 - 1.5d; • проточен реактор без рециркулация на утайката; • високи температури – 350С;

  24. Нови методи за отстраняване на азот от отпадъчни води Метод Sharon/Anammox 50%NH4+ 50%NO2 = 95%N2+ 5% NO3 Денитрификация

  25. Нови методи за отстраняване на азот от отпадъчни води Технологични особености при реактора Anammox • 100% спестяване на кислород за окислителните процеси; • 100% спестяване на външен въглерод за денитрификация; • 25 пъти по-висока скорост на окисление в сравнение с • конвенционалната денитрификация; • подходящ за високо концентрирани отпадъчни води със • съдържание на азот над 450 mg/l; • незначителна продукция на излишна утайка; • дълъг стартов период.

  26. Метод NOx нитрификационна зона 60%N2 денитрификационна зона 75% O2 aerobic Nitrosomonas нитритификация 40%NO2- NH4+ NO2- Nitrosomonas NOгаз 2NO2=газ N2O4газ NOгаз Метод NOx NO2газ NOx: NH4+ = 1:1000 50% O2 NO2газ

  27. Метод NOx 75% O2 anoxic нитритификация NH4+ NO2- Nitrosomonas NOгаз 2NO2=газ N2O4газ NOгаз Метод NOx NO2газ 50% O2 NO2газ непрекъснато подаване на NOx

  28. Нови методи за отстраняване на азот от отпадъчни води Общ вид на реактор Anammox за третиране на утайкови води в ПСОВ “Dockhaven” – гр. Ротердам, Холандия

  29. Университет по архитектура, строителство и геодезиякатедра“Водоснабдяване, канализация и пречистване на водите” Автоматизирани лабораторни биореактори

More Related