1 / 35

Chap.1 Part 3 Introduction to Organic Compounds

Chap.1 Part 3 Introduction to Organic Compounds. § 1 代表的な有機化合物 § 2 アルキル基(有機化合物の部分構造名) § 3 官能基 (functional groups) § 4 分子間力 (molecular force) § 5 溶解 (solubility) § 6 酸と塩基 (Acids and Bases) § 7 酸塩基性と構造との関係 § 8 酸塩基反応としての有機化学反応 § 9 有機反応機構 (mechanism). Introduction to Acid-Base Chemistry.

aviv
Télécharger la présentation

Chap.1 Part 3 Introduction to Organic Compounds

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chap.1Part 3 Introduction to Organic Compounds §1 代表的な有機化合物 §2 アルキル基(有機化合物の部分構造名) §3 官能基(functional groups) §4 分子間力(molecular force) §5 溶解(solubility) §6 酸と塩基(Acids and Bases) §7 酸塩基性と構造との関係 §8 酸塩基反応としての有機化学反応 §9 有機反応機構(mechanism)

  2. Introduction to Acid-Base Chemistry • Brønsted-Lowry Definition of Acids and Bases • Acid: a substance that can donate a proton • Base: a substance that can accept a proton < Example > Hydrogen chloride is a very strong acid and essentially all hydrogen chloride molecules transfer their proton to water

  3. Example • Aqueous hydrogen chloride and aqueous sodium hydroxide are mixed • The actual reaction is between hydronium and hydroxide ions • Hydronium ion

  4. ● ● ● ● ● ● Lewis Definition of Acids and Bases • Lewis Acid: electron pair acceptor • Lewis Base: electron pair donor • Curved arrows show movement of electrons to form and break bonds (2個の電子移動) 陰イオン  陽イオン 原子、ラジカル (1個の電子移動)

  5. Opposite Charges Attract and React BF3and NH3react based on their relative electron densities • BF3has substantial positive charge on the boron • NH3has substantial negative charge localized at the lone pair + 

  6. The Use of Curved Arrows in Illustrating Reactions • Curved arrows show the flow of electrons in a reaction • An arrow starts at a site of higher electron density (a covalent bond or unshared electron pair) and points to a site of electron deficiency <Example> Mechanism of reaction of HCl and water ● ● ● ● ● ● ● ●

  7. Strengths of Acids and Bases Ka and pKa • Acetic acid is a relatively weak acid and a 0.1M solution is only able to protonate water to the extent of about 1% The equilibrium equation for this reaction Keq

  8. Dilute acids have a constant concentration of water (about 55.5 M) and so the concentration of water can be factored out to obtain the acidity constant (Ka) Ka for acetic acid is 1.76 X 10-5 • Any weak acid (HA) dissolved in water fits the general Ka expression • The stronger the acid, the larger the Ka

  9. Acidity is usually expressed in terms of pKa pKa is the negative log of Ka The pKa for acetic acid is 4.75 定義 The larger the pKa, the weaker the acid

  10. Predicting the Strengths of Bases The stronger the acid, the weaker its conjugate base will be • Chloride is a very weak base because its conjugate acid HCl is a very strong acid

  11. 例:Methylamine is a stronger base than ammonia • The conjugate acid of methylamine is weaker than the conjugate acid of ammonia Stronger base Weaker acid

  12. Predicting the Outcome of Acid-Base Reactions Acid-base reaction always favor the formation of the weaker acid/weaker base pair • The weaker acid/weaker base are always on the same side of the equation Example • Acetic acid reacts with sodium hydroxide to greatly favor products

  13. Water Solubility as a Result of Salt Formation • Organic compounds which are water insoluble can sometimes be made soluble by turning them into salts <例>Water insoluble carboxylic acids can become soluble in aqueous sodium hydroxide ・Water insoluble amines can become soluble in aqueous hydrogen chloride

  14. §7 酸塩基性と構造との関係

  15. The Relationship Between Structure and Acidity • Acidity increases going down a row of the periodic table • Bond strength to hydrogen decreases going down the row and therefore acidity increases

  16. Acidity increases from left to right in a row of the periodic table • Increasingly electronegative atoms polarize the bond to hydrogen and also stabilize the conjugate base better (共役塩基)

  17. Overview of Acidity Trends

  18. The Effect of Hybridization on Acidity • Hydrogens connected to orbitals with more s character will be more acidic • s orbitals are smaller and closer to the nucleus than p orbitals • Anions in hybrid orbitals with more s character will be held more closely to the nucleus and be more stabilized sp sp2 sp3 more stable anion

  19. Inductive Effects(I 効果 誘起効果) • Electronic effects that are transmitted through space and through the bonds of a molecule • Fluorine is an electron withdrawing group (EWG) • The effect gets weaker with increasing distance - I効果 - I効果

  20. Explanation based on inductive effect • In acetic acid the highly polarized carbonyl group draws electron density away from the acidic hydrogen Also the conjugate base of acetic acid is more stabilized by the carbonyl group

  21. Inductive Effects of Other Groups • The electron withdrawing chloro group makes chloroacetic acid more acidic than acetic acid • The hydroxyl proton is more polarized and more acidic • The conjugate base is more stabilized

  22. 酸性度の順を予想する 1.CH3COOH 2.ClCH2COOH 3.Cl2CHCOOH 4.Cl3CCOOH 5.F3CCOOH

  23. 反応機構(Reaction mechanism)

  24. Heterolysis of Bonds to Carbons: (ヘテロリシス:   共有結合が切れる際に、 +部分と-部分に分かれるタイプの反応) Carbanions and Carbocations Reaction can occur to give a carbocation or carbanion depending on the nature of Z

  25. Carbocations have only 6 valence electrons • and a positive charge Carbanions have 8 valence electrons and a negative charge

  26. CH3CH2 ・  +  Br・ CH3CH2-Br Homolysis (1個の電子移動) 原子、ラジカルを生成 無水溶媒中で 光照射、高温加熱条件下

  27. Organic chemistry terms for • Lewis acids and bases • Electrophiles (“electron-loving” reagents ): • - or - • seek electrons to obtain a stable valence shell of electrons • electron-deficient themselves • e.g. carbocations >C+ • Nucleophiles (“nucleus-loving” reagents): • + or + • seek a proton or some other positively charged center • electron-rich themselves • e.g. carbanions >C: - (求電子試薬) (求核試薬)

  28. §8 酸塩基反応としての有機化学反応

  29. Organic Compounds as Bases • Any organic compound containing an atom with a lone pair (O,N) can act as a base

  30. p Electrons can also act as bases p Electrons are loosely held and available for reaction with strong acids

  31. A Mechanism for an Organic Reaction The Substitution Reaction of tert-Butyl Alcohol • All steps are acid-base reactions • Step 1 is a Brønsted acid-base reaction • Step 2 is a Lewis acid-base reaction in reverse with heterolytic cleavage of a bond • Step 3 is a Lewis acid-base reaction with chloride acting as a Lewis base and the carbocation acting as Lewis acid

  32. Acids and Bases in Nonaqueous Solutions • Water has a leveling effect on strong acids and bases • Any base stronger than hydroxide will be converted to hydroxide in water • Sodium amide can be used as a strong base • in solvents such as liquid NH3

  33. Alkyl lithium reagents in hexane are very strong bases The alkyl lithium is made from the alkyl bromide and lithium metal CH3CH2-Br + 2 Li -------> CH3CH2-Li + LiBr CH3CH2ーLi

More Related