540 likes | 728 Vues
Determination of optical and microphysical Properties of Water Clouds. Retrieved Parameters. Cloud optical thickness Cloud effective droplet radius Cloud top height Liquid water path Thermodynamic phase. Retrieved Parameters – Mathematical formulation.
E N D
Determination ofoptical and microphysical Properties of Water Clouds
Retrieved Parameters • Cloud optical thickness • Cloud effective droplet radius • Cloud top height • Liquid water path • Thermodynamic phase
Retrieved Parameters – Mathematical formulation • Effective cloud droplet radius Optical thickness
Basic concept of optical retrievals • reflectance / emission of a cloud • microphysical cloud parameters
Reflection Function • = ratio of reflected light intensity of a cloud to that of an ideal Lambertian white reflector • for Lambertian ideally white reflector • Clouds are not a Lambertian reflector • geometric dependence of R • transmission of incident radiation
Reflection Function – Geometric Dependence • Exact radiative transfer code (Mishchenko et al. 1999) using Gamma size distribution: 1
Reflection Function – Transmission • VIS: Reflection reduces due to transmission • = reflection function of a semi-infinite, non-abs. cloud • = global transmittance of a cloud • = asymmetry parameter • = escape functions
Dependence of RVIS on m0,aef, t • Reflection function of clouds in VIS • depends strongly on optical thickness • depends weakly on aef (Kokhanovsky et al. 2003)
Reflection Function – NIR • NIR: Reflection reduces due to transmission and weak absorption • = reflection function of a semi-infinite cloud • = diffusion exponent • = escape functions • Satellite signal is composed of a) solar component and b) thermal component
Dependence of RNIR on m0,aef, t • Reflection function of clouds in NIR (weakly absorbing) • depends strongly on aef • depends moderately on optical thickness (Kokhanovsky et al. 2003)
Dependence of RNIRaef Large droplets Volume is dominant parameter Absorption > Reflection Small droplets Cross-section is dominant parameter Reflection > Absorption
Dependence of Radiance Density on m0,aef, t • Retrieval of cloud parameters is possible with VIS / NIR bands of satellite sensors
Meteosat-8 Eumetsat geostationary orbit (0°) launch: 28.08.2002 operational since 4/2004 available at least up to 2012 SEVIRI Sensor repetition: 15 minutes 12 bands: 2 VIS (3km) 2 NIR (3km) 7 WV/IR (3km) 1 HRV (1km) Examples of suitable systems – Meteosat-8 SEVIRI
Terra & Aqua NASA (EOS) sun-synchronous orbit Terra launch 1999-12-18 EOS-AM (10:30 south) Aqua launch 2002-05-04 EOS-PM (13:30 north) MODIS Sensor 36 bands (0,62 – 14,39 µm) resolution 1km 2 VIS (250m) 5 VIS/NIR (500m) Examples of suitable systems – Terra-/Aqua-MODIS
Retrieval Concepts • Look-up table approach • = satellite signal is iteratively lined with pre-calculated look-up tables connecting cloud microphysical parameters with measured radiance density in VIS/NIR bands. • GTR (T. Nakajima, T. Y. Nakajima, Kawamoto) • NASA MOD06 (Platnick, King, Ackerman, Menzel, Baum, Riédi, Frey) • Semianalytical approach • = satellite signal is used for the solution of a simplified, single semi-analytical equation which is derived from exact radiative transfer equations. • SACURA (Kokhanovsky)
Example 1 - GTR • Look-up table approach • GTR retrieval • T. Nakajima, T. Y. Nakajima, Kawamoto
GTR – Extraction of Radiance Density from Signal ground thermal component cloud thermal component ground reflection • VIS • NIR
GTR - Preparation of LUTs • Grid system of LUTs • 1.,2.,4.,6.,9.,14.,20.,30.,50.,70.2.,4.,6.,9.,12.,15.,20.,25.,30.,35.,40.0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.0.,5.,10.,20.,30.,35.,40.,45.,50.,55.,60.,65.,70.0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180. • Liquid water content for several classified cloud types • Cu, Sc 0.300 g/m3As, Ac 0.250 g/m3Ci, Cs, Cc 0.014 g/m3Ns 0.300 g/m3Cb 0.393 g/m3St 1.540 g/m3 Pruppacher & Klett 1978, Heymsfield 1993
GTR - Preparation of additional datasets • Cloud-free albedo maps (monthly mean – minimum map) • VIS and NIR (solar radiation only) band • 6S code (Tanré 1990) • Cloud-free background BTT map (actual scene) • Multiple regression function • Latitude • Longitude • Height above sea level (DGM) • Temperature • Vertical profiles (actual scene) • MM5, Sounding data, etc. • Temperature • Humidity • Pressure
GTR – Additional datasets Satellite dataVIS / NIR bandsCloud-free albedo maps (6S)Cloud-free ground BBT map Radiative-Transfer-CalculationRadiance Density / BBT vs.microphysical Parameters Actual Atmosphere ProfilesMM5Sounding data IterationSatellite data - LUTs
GTR – Flow of Analysis (Kawamoto et al. 2001)
GTR – Calculation of w, D and Z • Liquid water path • Geometrical thickness • Cloud-top height from vertical profile data
GTR – Input Satellite Data Radiance density 0.6µm Radiance density 3.9µm[W/m2/µm/sr] [W/m2/µm/sr]
GTR - Results 11µmT[K] t Re[µm] Terra-MODIS, 2002-08-05, 11:05 GMT
Example 2 - SACURA • Semianalytical approach • SACURA retrieval • A. A. Kokhanovsky
SACURA – Retrieval of aef & t for 2 band algorithm 01 • VIS • NIR • can be calculated by simple approximation equations
SACURA – Retrieval of aef & t for 2 band algorithm 02 • from VIS: • from scaled optical thickness: • from other simplifications: • • Substitution in R2 retrieves aef with a single transcendent equation • t is retrieved subsequently with equation above
SACURA - Results 11µmT[K] t Re[µm] Terra-MODIS, 2002-08-05, 11:05 GMT
Error Estimation • Theoretical Errors
Error Estimation - SACURA • Error of R due to simplification of semi-analytical equations (Kokhanovsky et al. 2003)
Error Estimation - GTR • Error of retrieved parameters when applied to simulated satellite signals using t [5;10;15] at aef 10µm and aef [6;10;16µm] at t = 10. (Kawamoto et al. 2001)
Intercomparison • Intercomparison • SACURA vs. GTR. vs MOD06
Intercomparison SACURA vs. GTR vs. MOD06 aef [µm] GTR SACURA MOD06 Terra-MODIS, 2001-07-18, 15:30 GMT t GTR SACURA MOD06
Intercomparison SACURA vs. GTR vs. MOD06 aef [µm] GTR SACURA MOD06 t GTR SACURA MOD06
Intercomparison SACURA vs. GTR vs. MOD06 - aef Terra-MODIS, 2001-07-18, 15:30 GMT
Intercomparison SACURA vs. GTR vs. MOD06 - t Terra-MODIS, 2001-07-18, 15:30 GMT
Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, 2001-07-18, 15:30 GMT
Conclusion • Retrieval of aef and t from satellite data is possible • Retrieval is one realization of the reality • LUT and asymptotic theory approaches have errors due to • Inhomogeneous clouds • Errors in additional datasets, partly cloud covered pixels etc. • Errors of asymptotic approach are negligible for optically thick clouds • Asymptotic equations can be simplified with negligible errors for t > 5
Outlook • We will join efforts to implement a new version combining both approaches • t > 10 semi-analytical equations • t < 5 LUT approach • 5 < t < 10 one of both but we will see…. • Optimized algorithm with regard of • minimization of computer time and • minimization of errors
Acknowledgments • Alexander A. Kokhanovsky
Thank you • The End
Intercomparison SACURA vs. GTR vs. MOD06 aef [µm] GTR SACURA MOD06 Terra-MODIS, 2002-08-10, 09:45 GMT t GTR SACURA MOD06
Intercomparison SACURA vs. GTR vs. MOD06 - aef Terra-MODIS, 2002-08-10, 09:45 GMT
Intercomparison SACURA vs. GTR vs. MOD06 - t Terra-MODIS, 2002-08-10, 09:45 GMT
Intercomparison SACURA vs. GTR vs. MOD06 – Freq. Terra-MODIS, 2002-08-10, 09:45 GMT
Intercomparison SACURA vs. GTR vs. MOD06 – Delta Terra-MODIS, 2002-08-10, 09:45 GMT
SACURA – Lambert surface reflection • VIS • Large optical thickness direct solar light term can be neglected • NIR • can be calculated by simple approximation equations
Error Estimation - SACURA • Error of retrieved parameters due to measurement errors and t (Kokhanovsky et al. 2003)