1 / 7

Range Searches

Range Searches. `` Find all students with gpa > 3.0 ’’ If data is in sorted file, do binary search to find first such student, then scan to find others. Cost of binary search can be quite high. Simple idea: Create an `index’ file. Index File. kN. k2. k1. Data File. Page N. Page 3.

aya
Télécharger la présentation

Range Searches

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Range Searches • ``Find all students with gpa > 3.0’’ • If data is in sorted file, do binary search to find first such student, then scan to find others. • Cost of binary search can be quite high. • Simple idea: Create an `index’ file. Index File kN k2 k1 Data File Page N Page 3 Page 1 Page 2 • Can do binary search on (smaller) index file!

  2. Overflow page index entry ISAM P K P K P P K m 0 1 2 1 m 2 • Index file may still be quite large. But we can apply the idea repeatedly! Non-leaf Pages Leaf Pages Primary pages • Leaf pages contain data entries.

  3. Root 40 20 33 51 63 46* 55* 10* 15* 20* 27* 33* 37* 40* 51* 97* 63* Example ISAM Tree • Each node can hold 2 entries; no need for `next-leaf-page’ pointers. (Why?)

  4. After Inserting 23*, 48*, 41*, 42* ... Root 40 Index Pages 20 33 51 63 Primary Leaf 46* 55* 10* 15* 20* 27* 33* 37* 40* 51* 97* 63* Pages 41* 48* 23* Overflow Pages 42*

  5. ... Then Deleting 42*, 51*, 97* Root 40 20 33 51 63 46* 55* 10* 15* 20* 27* 33* 37* 40* 63* 41* 48* 23* • Note that 51* appears in index levels, but not in leaf!

  6. Summary • Tree-structured indexes are ideal for range-searches, also good for equality searches. • ISAM is a static structure. • Only leaf pages modified; overflow pages needed. • Overflow chains can degrade performance unless size of data set and data distribution stay constant. • B+ tree is a dynamic structure. • Inserts/deletes leave tree height-balanced; log F N cost. • High fanout (F) means depth rarely more than 3 or 4. • Almost always better than maintaining a sorted file.

  7. Summary (Contd.) • Typically, 67% occupancy on average. • Usually preferable to ISAM, modulolockingconsiderations; adjusts to growth gracefully. • If data entries are data records, splits can change rids! • Most widely used index in database management systems because of its versatility. One of the most optimized components of a DBMS.

More Related