1.15k likes | 1.78k Vues
Autonomous Robot Navigation. Panos Trahanias e-mail: trahania@csd.uoc.gr. ΗΥ475 Fall 2007. Mobile Robots - Examples. The museum tour-guide Minerva. The Mars rover Sojourner. The museum tour-guide Lefkos. The RHex Hexapod. Typical Mobile Robot Setup. Sensors Stereo vision Sonars
E N D
Autonomous Robot Navigation Panos Trahanias e-mail: trahania@csd.uoc.gr ΗΥ475 Fall 2007
Mobile Robots - Examples The museum tour-guide Minerva The Mars rover Sojourner The museum tour-guide Lefkos The RHex Hexapod Panos Trahanias: Autonomous Robot Navigation
Typical Mobile Robot Setup Sensors Stereo vision Sonars Bump sensors Infrared sensors Laser scanner Bump sensors Sonars Odometry Interaction Processing Power Motors Communications Panos Trahanias: Autonomous Robot Navigation
Scope of the Course Mobile Robots – How to move and achieve motion target goals in (indoor) environments Hence • Localization (where am I?) • Mapping, simultaneous localization and mapping – SLAM (what is my workspace?) • Path planning (how to get there?) • Obstacle avoidance (… get there safely…) Panos Trahanias: Autonomous Robot Navigation
C G Autonomous Navigation- Research Directions • Given • An environment representation - Map • Knowledge of current position C • Target position G • A path has to be planned and tracked that will take the robot from C to G Panos Trahanias: Autonomous Robot Navigation
C G O Autonomous Navigation- Research Directions • During execution (run-time) • Objects / Obstacles O may block the robot • The planned path is no-longer valid X • The obstacle needs to be avoided and the path may need to be re-planned Panos Trahanias: Autonomous Robot Navigation
Important questions (Levitt et al ’91) Important navigation issues Navigation Issues Where am I Robot localization Where are other places relative to me Map building How do I get to other places from here Path/motion planning Panos Trahanias: Autonomous Robot Navigation
Navigation Issues – Underlying HW Sensors Stereo vision Sonars Bump sensors Infrared sensors Laser scanner Bump sensors Sonars Odometry Interaction Processing Power Motors Communications Laser Scanner Panos Trahanias: Autonomous Robot Navigation
Range Sensor Model • Laser Rangefinder • Model range and angle errors. Panos Trahanias: Autonomous Robot Navigation
Need for Modeling Robot + Environment Need for Appropriate Modeling Extremely Complex Dynamical System Panos Trahanias: Autonomous Robot Navigation
State depends only on previous state and observations Static world assumption Hidden Markov Model (HMM) Markov Assumption Bayesian estimation: Attempt to construct the posterior distribution of the state given all measurements Panos Trahanias: Autonomous Robot Navigation
A Dynamic System • Most commonly - Available: • Initial State • Observations • System (motion) Model • Measurement (observation) Model Panos Trahanias: Autonomous Robot Navigation
Localization (inference task)Compute the probability that the robot is at pose z at time t given all observations up to time t (forward recursions only) Inference - Learning • Map building (learning task)Determine the map m that maximizes the probability of the observation sequence. Panos Trahanias: Autonomous Robot Navigation
Discrete representation Grid (Dynamic) (Dynamic) Markov localization (Burgard98) Samples Monte Carlo localization (Fox99) Continuous representation Gaussian distributions Kalman filters (Kalman60) Belief State How is the posterior distribution calculated? How is the prior distribution represented? Panos Trahanias: Autonomous Robot Navigation
Example: State Representations for Robot Localization Discrete Representations Continuous Representations Grid Based approaches (Markov localization) Particle Filters (Monte Carlolocalization) Kalman Tracking Panos Trahanias: Autonomous Robot Navigation
LOCALIZATION Panos Trahanias: Autonomous Robot Navigation
Markov Assumption Localization: determine the likelihood of robot’s state Given a sequence of observations Determine the probability Panos Trahanias: Autonomous Robot Navigation
Markov Assumption In practice: too difficult to determine the joint effect of all observations up to time K. Common assumption: hidden states obey the Markov assumption (static world assumption), so as we can factor as Panos Trahanias: Autonomous Robot Navigation
Markov Assumption Panos Trahanias: Autonomous Robot Navigation
Markov Assumption All information about past history is represented in Integrate over all possible states Different approaches in this representation lead to different treatments of the problem. Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Probabilistic estimation • Simultaneously maintain estimates for both the state x and error covariance matrix P • Equivalent to say: output of a Kalman filter is a Gaussian PDF (other methods can handle more general distributions) Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Crude localization method: integrate robot velocity commands Problem: info continuously lost, no new info added. Solution: add info from exterioreceptive sensors. Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Sensor measurements add new info – PDF in sensor space. Localization knowledge (prior to sensor measurement) is a PDF in state space. Probabilistic Estimation: merge the 2 PDFs Two step process: prediction update Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Simple observer update Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Prediction Update Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Observing with probability distributions Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Prediction Update where Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Panos Trahanias: Autonomous Robot Navigation
Kalman Filtering Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Discrete Approximations Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Discrete Approximations Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Discrete Approximations Results Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Discrete Approximations Results Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters/Resampling Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters Motion Model Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters State Belief Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters Global Localization Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Particle Filters Global Localization - Results Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Sensor Models Typical Sonar Scan Panos Trahanias: Autonomous Robot Navigation
Bayesian Methods – Sensor Models Histograms Panos Trahanias: Autonomous Robot Navigation
PATH PLANNING Panos Trahanias: Autonomous Robot Navigation
Bug Algorithms Bug1 Panos Trahanias: Autonomous Robot Navigation
Bug Algorithms Bug1 Panos Trahanias: Autonomous Robot Navigation
Bug Algorithms Bug2 Panos Trahanias: Autonomous Robot Navigation
Bug Algorithms Bug2 Panos Trahanias: Autonomous Robot Navigation
Bug Algorithms Bug2 Panos Trahanias: Autonomous Robot Navigation