1 / 19

Phase transformations

1600. d. L. 1400. T (°C). g. + L. g. 1200. L +Fe 3 C. 1148°C. (austenite). 1000. g. + Fe 3 C. 800. Fe 3 C (cementite). 727°C. 600. a. + Fe 3 C. 400. 0. 1. 2. 3. 4. 5. 6. 6.7. C o , wt% C. Phase transformations. • Growth of pearlite from austenite:.

Télécharger la présentation

Phase transformations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1600 d L 1400 T(°C) g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C 800 Fe3C (cementite) 727°C 600 a +Fe3C 400 0 1 2 3 4 5 6 6.7 Co, wt% C Phase transformations

  2. • Growth of pearlite from austenite: Diffusive flow of C needed Austenite (g) cementite (Fe3C) grain a Ferrite (a) a a boundary g g a g g a pearlite a a growth a direction a 600°C (DT larger) 650°C 50 675°C y (% pearlite) (DT smaller) 0 100

  3. 727°C Transformations & Supercooling g Þ a + Fe3C 0.76 wt% C 6.7 wt% C 0.022 wt% C T(°C) 1600 d L 1400 g +L g 1200 L+Fe3C 1148°C (austenite) 1000 g +Fe3C a Eutectoid: Fe3C (cementite) ferrite 800 DT a +Fe3C 600 0.022 0.76 400 0 1 2 3 4 5 6 6.7 Co, wt%C (Fe)

  4. Isothermal Transformation Diagrams 100 T = 675°C y, 50 % transformed 0 2 4 time (s) 1 10 10 T(°C) Austenite (stable) TE(727C) 700 Austenite (unstable) Pearlite 600 100% 500 50% 0%pearlite 400 time (s) 2 3 4 5 1 10 10 10 10 10

  5. Effect of Cooling History in Fe-C System 2 3 4 5 1 10 10 10 10 10 T(°C) Austenite (stable) TE (727C) 700 Austenite (unstable) Pearlite 600 100% 500 50% 0%pearlite 400 time (s) • Eutectoid composition, Co = 0.76 wt% C.

  6. P + A Transformations with Proeutectoid Materials CO = 1.13 wt% C T(°C) T(°C) 900 1600 d A L 1400 800 TE (727°C) A g +L + g 1200 L+Fe3C A C (austenite) 700 1000 Fe3C (cementite) g +Fe3C P 600 800 727°C a DT a +Fe3C 500 600 0.022 0.76 1 10 102 103 104 1.13 400 time (s) 0 1 2 3 4 5 6 6.7 (Fe) Co, wt%C

  7. 800 Austenite (stable) TE T(°C) A P 600 pearlite/bainite boundary B 400 A 200 0% 100% 50% 10 -1 3 5 10 10 10 time (s) Non-Equilibrium Transformation Products: Fe-C • Bainite: --a strips with long needles of Fe3C --diffusion controlled. • Isothermal Transf. Diagram Fe3C (cementite) a (ferrite) 5 mm

  8. Spheroidite: Fe-C System a (ferrite) Fe3C (cementite) 60 m

  9. Martensite: Fe-C System (involves single atom jumps) x Fe atom potential 60 m x x sites C atom sites x x x Martensite needles 800 Austenite (stable) Austenite TE T(°C) A P 600 B 400 A 100% 50% 0% 0% 200 M + A 50% M + A 90% M + A t/s -1 10 3 5 10 10 10 • Martensite: --g(FCC) to Martensite (BCT) • Isothermal Transf. Diagram

  10. Phase Transformations of Alloys

  11. Dynamic Phase Transformations On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures: • 42% proeutectoid ferrite and 58% coarse pearlite • 50% fine pearlite and 50% bainite • 100% martensite • 50% martensite and 50% austenite

  12. 800 A + a A T (°C) A + P P 600 B A + B A 50% 400 M (start) M (50%) M (90%) 200 0 0.1 10 103 105 time (s) Example Problem for Co = 0.45 wt%

  13. 800 A + a A T (°C) A + P P 600 B A + B A 50% 400 M (start) M (50%) M (90%) 200 0 0.1 10 103 105 time (s) Example Problem for Co = 0.45 wt%

  14. 800 A + a A T (°C) A + P P 600 B A + B A 50% 400 M (start) M (50%) M (90%) 200 0 0.1 10 103 105 time (s) Example Problem for Co = 0.45 wt%

  15. Hypo Hyper Hypo Hyper %EL 80 100 40 Impact energy (Izod, ft-lb) 50 0 0 1 0.5 0 0.76 wt% C Mechanical Prop: Fe-C System (1) • Effect of wt% C Pearlite (med) Pearlite (med) C ementite (hard) ferrite (soft) Co< 0.76 wt% C Co > 0.76 wt% C Hypoeutectoid Hypereutectoid TS(MPa) 1100 Izod 900 TS hardness 700 EL 500 YS 300 1 0.5 0 0.76 wt% C

  16. Hypo Hyper Hypo Hyper 90 320 fine spheroidite 60 pearlite 240 coarse Ductility (%AR) pearlite spheroidite Brinell hardness coarse 160 30 pearlite fine pearlite 80 0 1 1 0.5 0 0.5 0 wt%C wt%C Mechanical Prop: Fe-C System (2) • Fine vs coarse pearlite vs spheroidite

  17. Hypo Hyper 600 martensite Brinell hardness 400 200 fine pearlite 0 1 0.5 0 wt% C Mechanical Prop: Fe-C System (3) • Fine Pearlite vs Martensite:

  18. Tempering Martensite MPa 1800 TS 1600 YS 1400 9 mm 1200 60 50 1000 %RA %RA 40 800 30 200 400 600 Tempering T(°C)

  19. Austenite (g) moderate rapid slow cool quench cool Pearlite Bainite Martensite (a + Fe3C plates/needles) (a + Fe3C layers + a (BCT phase diffusionless proeutectoid phase) transformation) reheat Martensite T Martensite Tempered bainite Strength Ductility Martensite fine pearlite (a + very fine coarse pearlite Fe3C particles) spheroidite General Trends Summary: Processing Options

More Related