1 / 22

Isocontour/surface Extractions

Isocontour/surface Extractions. 3D Isosurface. 2D Isocontour. p5. p4. Isocontour (0). Remember bi-linear interpolation. p2. p3. To know the value of P, we can first compute p4 and P5 and then linearly interpolate P. P =?. p1. p0. p2. p3. p1. p0. Isocontour (1).

Télécharger la présentation

Isocontour/surface Extractions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Isocontour/surface Extractions 3D Isosurface 2D Isocontour

  2. p5 p4 Isocontour (0) Remember bi-linear interpolation p2 p3 To know the value of P, we can first compute p4 and P5 and then linearly interpolate P P =? p1 p0

  3. p2 p3 p1 p0 Isocontour (1) Consider a simple case: one cell data set The problem of extracting an isocontour is an inverse of value interpolation. That is: Gieven f(p0)=v0, f(p1)=v1, f(p2)=v2, f(p3)=v3 Find the point(s) P within the cell that have values F(p) = C

  4. p2 p3 p1 p0 Isocontour (2) We can solve the problem based on linear interpolation (1) Identify edges that contain points P that have value f(P) = C (2) Calculate the positions of P (3) Connect the points with lines

  5. If v1 < C < v2 then the edge contains such a point v1 v2 Isocontouring – Step 1 (1) Identify edges that contain points P that have value f(P) = C

  6. Use linear interpolation: P = P1 + (C-v1)/(v2-v1) * (P2 – P1) p1 P p2 v1 v2 C Isocontouring – Step 2 (2) Calculate the position of P

  7. Connect the points with line(s) p2 p3 p1 p0 Isocontouring – Step 3 Based on the principle of linear variation, all the points on the line have values equal C

  8. p2 p3 So there can be 2 * 2 * 2 * 2 = 16 cases! p1 p0 Isocontour cases How many cases can an isocontour intersect a cell? When comparing the value of Pi with the isovalue C, there can be two cases: Vi > = C or Vi < C

  9. (2) One inside(outside), 3 outside(inside) (1) Complete outside(inside) (3) Two inside(outside), two outside(inside) (4) Two contours pass through How many cases again? In fact, there are only 4 unique topological cases

  10. p2 p2 p3 p3 p1 p1 p0 p0 - - + outside cell inside cell Inside or Outside? • Just a naming convention • If a value is smaller than the isovalue, we call it “Inside” • If a value is greater than the isovalue, we call it “Outise”

  11. Put it all together • Divide-and-conquer algorithm • Look at one cell at a time • Compare the values at 4 vertices with the isovalue C • Linear interpolate along the edges • Connects the interpolated points together

  12. 3D Isocontour (Isosurface)

  13. Isosurface Extraction • Extend the same divide-and-conquer algorithm to three dimension • 3D cells • Look at one cell at a time • Let’s only focus on voxel

  14. _ + + _ _ + + _ _ + + _ _ + + _ Divide-and-Conquer (2 triangles)

  15. Now we have 8 vertices So it is: 2 = 256 8 How many unique topological cases? How many cases?

  16. _ _ + + _ + + _ _ _ + + _ + _ + Case Reduction (1) Value Symmetry

  17. _ _ _ _ _ + _ + _ _ _ _ _ _ + + Case Reduction (2) Rotation Symmetry By inspection, we can reduce 256 14

  18. Isosurface Cases Total number of cases: 14

  19. Marching Cubes Algorithm A Divide-and-Conquer Algorithm Vi is ‘1’ or ‘0’ (one bit) 1: > C; 0: <C (C= sovalue) Each cell has an index mapped to a value ranged [0,255] Index = v8 v7 v6 v5 v4 v3 v2 v1 v8 v7 v4 v3 v6 v5 v2 v1

  20. Marching Cubes (2) Given the index for each cell, a table lookup is performed to identify the edges that has intersections with the isosurface Index intersection edges 0 e1, e3, e5 e7 … 1 e11 e8 e12 e6 2 e3 e5 3 e2 e4 e9 e10 e1 14

  21. + _ + _ + _ + _ Marching Cubes (3) • Perform linear interpolations • at the edges to calculate the • intersection points • Connect the points

  22. Why is it called marching cubes? • Linear search through cells • Row by row, layer by layer • Reuse the interpolated points • for adjacent cells

More Related