1 / 46

научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г.

Status of NICA Project N uclotron-based I on C ollider f A cility. G. Trubnikov for NICA Collaboration. научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г. Contents Introduction: “The physics case” and goals of the NICA project 1. NICA scheme & layout

Télécharger la présentation

научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of NICAProject Nuclotron-based IonColliderfAcility G. Trubnikov forNICA Collaboration научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г.

  2. Contents Introduction: “The physics case” and goals of the NICA project 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams inNICA 4. NICA project status and nearest plans Conclusion

  3. http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome Introduction: Relativistic nuclear physics today & “the physics case” of NICA critRHIC (2009) stars n/n_nuclear (n_nuclear = 0.16 fm-3)

  4. Introduction: Relativistic nuclear physics today & “the physics case” of NICA The NICA Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at sNN = 4  11 GeV (1  4.5 GeV/u ion kinetic energy ) at Laverage= 11027 cm-2s-1 (at sNN = 9 GeV) 1b) Light-Heavy ion colliding beams of the same energy range and luminosity 2) Polarized beams of protons and deuterons: pp sNN = 12  25 GeV (5  12.6 GeV kinetic energy ) dd sNN = 4  13.8 GeV (2  5.9 GeV/u ion kinetic energy )

  5. NICA scheme & layout MPD 2.3 m Collider C = 251 m 4.0 m KRION-6T & HILac Booster Synchrophasotron yoke “Old” linac Spin Physics Detector (SPD) Beam transfer line Existing beam lines (Fixed target exp-s) Nuclotron

  6. “Old” Linac LU-20 Booster KRION + “New” HILAC Nuclotron Collider Beam dump 1. NICA scheme & layout (Contnd) MPD SPD

  7. 2. Heavy ions in NICA Nuclotron (45 Tm) injection of one bunch of 1.1×109 ions, acceleration up to 14.5 GeV/u max. IP-1 Two superconducting collider rings IP-2 Bunch compression (RF phase jump) 2.1. Operation regime and parameters Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×109, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Collider (45 Tm) Storage of 17 (20) bunches  1109 ions per ring at 14.5 GeV/u, electron and/or stochastic cooling Stripping (80%) 197Au32+  197Au79+ 2х17 (20) injection cycles

  8. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch parameters dynamics in the injection chain

  9. 2. Heavy ions in NICA (Contnd) 34 injection cycles to Collider rings of 1109 ions 197Au79+ per cycle 1.71010 ions/ring 2.1. Operation regime and parameters Time Table of The Storage Process Booster magnetic field electron cooling Extraction, stripping to 197Au79+ B(t), arb. units 1 (2-3) injection cycles, electron cooling (?) t, [s] Nuclotron magnetic field bunch compression, extraction B(t), arb. units injection t, [s]

  10. 2. Heavy ions in NICA (Contnd) I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin Spin rotator 10 m x,y kicker 2.2. Collider E_cooler MPD S_Cool PU x, y, long Upper ring Injection channels Long. kicker SPD RF Beam dump

  11. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) General Parameters

  12. 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd)

  13. 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) Collider beam parameters and luminosity

  14. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) • Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: • bunch number is limited by kicker pulse duration, • bunch compression in Nuclotron is required (!) • Electron and/or stochastic cooling is used for luminosity preservation. Under development by Prof. T.Katayama (retired from Tokyo Univ.) • 2) Injection and storage with barrier bucket technique and coolingof a coasting (!) beam, 20 bunches, • bunch number is limited by interbunch space in IP straight section, • bunch compression in Nuclotron is NOT required (!) • Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required.

  15. 3. Heavy ions in NICA (Contnd) What is “old” and what is new? see below 3.2. Collider: the problems to be solved • Collider SC dipoles with max B up to 4 T, • “Flexible” lattice (transition energy change with energy), • RF parameters (related problem), • Single bunch stability, • Vacuum chamber impedance and multibunch stability, • Electron clouds (vacuum chamber coating?), • Stochastic cooling of bunched ion beam, • Electron cooling at electron energy up to 2.5 MeV.

  16. 3. Polarized particle beams inNICA Spin rotator: “Full Siberian snake” Longitudinal polarization formation Yu.Filatov, I.Meshkov MPD B B SPD Upper ring “Siberian snake”: Protons, 1  E  12 GeV  (BL)solenoid 50 T∙m Deuterons, 1  E  5 GeV/u  (BL)solenoid  140 T∙m

  17. 3. Polarized particle beams inNICA (Contnd) Parameters of polarized proton beams in collider

  18. 4.NICA project status and plans Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) January 2008 NICA CDR MPD LoI January 2009 NICA CDR (Short version)

  19. 4.NICA project status and plans (Contnd) Since publication of the 1-st version of the NICA CDR The Concept was developed, the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron

  20. 4.NICA project status and plans (Contnd) Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна,2009 Дубна,2009 August 2009 NICA TDR (volumes I & II)

  21. 4.NICA project status and plans (Contnd) Approved by Director of JINR academicianA.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____"2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR has been developed by the NICA collaboration: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INRRAS, Troitsk V.Matveev, A.Belov, L.Kravchuk Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan ITEP, Moscow: A.Bol’shakov, V.Kapin, B.Sharkov, P.Zenkevich Chief engineer of the ProjectV.Kalagin, Chief designer of the ProjectN.Topilin Editors:I.Meshkov, A.Sidorin

  22. 4.NICA project status and plans 2009 2010 2011 2012 2013 2014 2015 KRION LINAC + trans. channel Booster: magnetic system Booster + trans. channel Nuclotron-M Nuclotron-NICA Transfer channel to Collider Collider Diagnostics PS systems Control systems Infrastructure R & D design Manufctrng + mounting mountg+commssiong comms/operatn operation

  23. 4. NICA project status and plans 4.3. Nuclotron-NICA • To be designed, • constructed and commissioned: • Injection system (new HILAC) • RF system – new version with bunch compression • 3.Dedicated diagnostics • 4.Single turn extraction with fine synchronization • 5.Polarized protons acceleration in Nuclotron To be commissioned in 2013.

  24. Nuclotron provides now performance of experiments on accelerated proton and ion beams (up to Fe24+, A=56) with energies up to 5,7 and 2,2 GeV/n correspondingly (project parameters for ions is 6 GeV/n with Z/A = 0,5)

  25. 10 stages-subprojects of the Nuclotron-M project - Modernization of ion source KRION to KRION 6T; - Improvement of the vacuum in the Nuclotron ring; - Development of the power supply system, quench detection and energy evacuation system; - Modernization of the RF system (including trapping & bunching systems, controls and diagnostics); - Modernization of the slow extraction system for accelerated heavy ions at maximal energies; - Modernization of automatic control system, diagnostics and beam control system; - Transportation channel of the extracted beams and radiation safety; - Improvement of the safety, stability and economical efficiency of the cryogenics; Beam dynamics: minimization of the beam losses at all stages from injection to acceleration and to extraction of the beams (not more then 15-20%, we have about 50-80%). - Modernization of the injector complex (fore-injector and linac) for acceleration of heavy ions; - Development and creation of high intensity polarized deutron source

  26. Development of the KRION ESIS + Injector modernization Heavy ions (A=100-200) Energy evacuation system Quench protection system Energy 6 Gev/n (for Z/A = 1/2) Field ~ 2T Slow extraction at HE Nuclotron-M Vacuum improvement Intensity >10^7 ppc (with KRION-2) Control, diagnostics, RF Cryogenics modernization Stable, safe, long operation Power supply system modernization Radiation safety Nuclotron-M beams in 2010 and further (until NICA commissioning): - Deutrons, protons – development of existing physics program + appl. research - Light ions – hypernuclei, applied research (medicine, radiobiology, etc) - Heavy ions – R&D for detector elements, key accelerator technologies for NICA (stripping, fast injection/extraction, cooling, electron clouds effect, etc) - Polarized deutrons from new intense source (polarimetry, etc.)

  27. Machine advisory committee (MAC) • Boris Sharkov, (ITEP), chairman • Pavel Beloshitsky, (CERN) • Sergei Ivanov, (IHEP) • Thomas Roser, (BNL) • Markus Steck, (GSI) • Nicholas Walker, (DESY) • 1-st report on Nuclotron-M Jan 2009 • 1-st review on NICA June 2009 • The next meeting is foreseen in Dubna Jan 2010

  28. Nuclotron-M/NICA Machine Advisory Committee

  29. 4. NICA project status and plans E.D.Donets E.E.Donets KRION-6T Cryostat & vac. chamber RFQ Electrodes Sector H-cavity of “Ural” RFQ DTL (prototype) 2H cavities of "Ural" RFQ (prototype) 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g.197Au32+). To be commissioned in 2013. HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under design and construction (O.Belyaev & the Team, IHEP, Protvino). To be commissioned in 2013.

  30. 4. NICA project status and plans A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin 2.3 m Vladimir I. Veksler 4.0 m 4.2. Booster “Nuclotron-type” SC magnets for Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Nuclotron Synchrophasotron yoke Booster • B = 25 Tm, Bmax = 1.8 T • 3 single-turn injections • 2) Storage and electron cooling of 8×109197Au32+ • 3) Acceleration up to 600 MeV/u • 4) Extraction & stripping Dismounting is in progress presently

  31. 4. NICA project status and plans 4.2. Booster (Contnd) The technical design of the Booster is in progress, The Booster is to be commissioned in 2013.

  32. 4. NICA project status and plans SC magnet technology 4.2. Booster (Contnd) SC hollow cable

  33. 4. NICA project status and plans 4.2. Booster (Contnd) RF system (designed by Budker INP)

  34. 4.2. Booster Contnd) 4. NICA project status and plans Electron cooling system of the Booster (Contnd) e-gun e-collector

  35. 4. NICA project status and plans 4.4. Collider Double ring collider;(B)max = 45 Tm, Bmax = 4 T A.Kovalenko G.Khodjibagiyan “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket To be commissioned in 2014.

  36. 4. NICA project status and plans “Twin” dipole field 4.4. Collider (Contnd) Double ring collider;(B)max = 45 Tm, Bmax = 4 T G.Khodjibagiyan et al. “Twin magnets” for NICA collider rings “Twin” quadrupoles

  37. 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV 2.5 Max electron current, A 0.5 Solenoid magnetic field, T 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type I.Meshkov A.Smirnov S.Yakovenko Warm, NbTi or HTSC (?!) 3 m 6 m To be commissioned in 2014. • Under development in collaboration with • All-Russian Institute for • Electrotechnique (Moscow) • FZ Juelich • Budker INP

  38. 4. NICA project status and plans GSI/JINR/BNL 2005 - 2009 RoundTable DiscussionsI, II, III, IV JINR, Dubna, 2005, 2006, 2008 http://theor.jinr.ru/meetings/2008/roundtable/ IHEP (Protvino) InjectorLinac Budker INP • Booster RF system • Booster electron cooling • Collider RF system • Collider SC magnets (expertise) • HV electron cooler for collider • Electronics (?) FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HV Electron cooler Beam dynamics Stoch. cooling BNL (RHIC) Electron & Stoch. Cooling GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider 4.5. NICA Collaboration All-Russian Institute for Electrotechnique HVElectron cooler ITEP: Beam dynamics in the collider Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

  39. Thank you for your attention!

  40. 5. NICA project status and plans V.Kalagin I.Meshkov V.Mikhailov G.Trubnikov 5.5. “Collider 2T” From Nuclotron MPD SPD “The ambush regiment” Collider: C_Ring 380 м Dipoles 2 Тл 25 m Luminosity?

  41. 3. Heavy ions in NICA (Contnd) 3.2. Collider(Contnd) Barrier Bucket Method Ion trajectory in the phase space (p, ) (p)ion V(t) Cavity voltage p> (p)separatrix  2 0 _stack Unstable phase area (injection area) In reality RF voltage pulses can be (and are actually) of nonrectangular shape (p)ion Cooling is ON 0 The first proposal: Fermilab, J. Griffin et.al., IEEE Trans.onNuclear Science, v.NS30 No.4, 3502 (1983) The particle storage with barrier buckets method was tested at ESR (GSI) with electron cooling (2008). NICA: Trevolution = 0.85  0.96 s, VBB  16 kV

  42. 2. Heavy ions in NICA (Contnd) ! 2.2. Collider (Contnd) IBS Heating and cooling –luminosity evolution at electron cooling B [kG] 8 6 4 2 6 Luminosity [1E27 cm-2∙s-1] 4 2 0 BETACOOL simulation Te = 10 eV  to reduce recombination! Parameters ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3 electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV;  = 0.024 (6 m/250 m)

  43. 2. Heavy ions in NICA (Contnd) 2.2. Collider: electron cloud effect Electron cloud formation criteria The necessary condition: The sufficient condition (“multipactor effect”): Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius, re – electron classic radius, lspace – distance between bunches, me– electron mass, c – the speed of light, crit ~ 1 keV – electron energy sufficient for secondary electron generation. For NICA bunch parameters (109197Au79+ ions/bunch) (Nbunch)necessary ~ 7108, (Nbunch)sufficient~ 6109.

  44. 5. NICA project status and plans 5.5. “Collider 2T” (Contnd) G.Khodjibagiyan et al. Dipoles 2 Тл I.Meshkov, G.Trubnikov Status of NICA Project Seminar at BNL November 5, 2009 Victor Yarba, Alexander Zlobin: “Common coils” technology Fermilab, October 30, 2009

  45. 3. Polarized particle beams inNICA (Contnd) Transverse polarization formation B (450) MPD SPD Dipole “450” Lower ring B Dipole “450” B (450)

  46. 3. Polarized particle beams inNICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superperiods (8 for Nuclotron) Power of the Spin resonances: P1,2 ~ 103∙P3,4

More Related