1 / 35

On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Biogeochemical Model-Data Integration Group. Carbon Fusion International Workshop Edinburgh, May 2006. On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling. Markus Reichstein, Dario Papale

caden
Télécharger la présentation

On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biogeochemical Model-Data Integration Group Carbon Fusion International Workshop Edinburgh, May 2006 On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling Markus Reichstein, Dario Papale Biogeochemical Model-Data-Integration Group, Max-Planck-Institute Jena Laboratory of Forest Ecology, University of Tuscia

  2. BGC-Model-Data Integration Overview Ecosystem models + provide system understanding+ promise inter-/extrapolation capacity+ may include historical effects – are simplifications of the world– can’t predict stochastic events Ecosystem data Remote sensing + Potentially high quality+ often high temporal resolution – data compatibility ? – ‘point’ observations + objective/consistent observations+ spatially and temporally dense – data quality lower– processes not directly observable, no history, no prediction

  3. Outline • Introduction to eddy covariance data • Bottom-up perspective of an ‘ideal’ data integration-validation process • Problems and obstacles in this process

  4. Observing ecosystem gas exchange: eddy covariance Flux = speed x concentration Photo: Baldocchi

  5. CO2, H2O Eddy covariance + Measures whole ecosystem exchange of CO2 and H2O, … + Non-destructive & continuous + time-scale hourly to interannual + integrates over large area - only on flat sites - relies on turbulent conditions ==> data gaps, stochastic data - source area varying (flux footprint) - only ‚point‘ measurements Does not deliver compartment fluxes, but: NEP = GPP - Reco

  6. Respiration Carbon uptake Half-hourly eddy covariance data Evapotransp.

  7. Raw data Knowledge 1013  108  106  102 bytes Model param. Synth./aggr. Turb stat. Network of ecosystem-level observations >1000 site-years  1012 raw measurements (1013 bytes) • Network and intercomparison studies • Harmonised and documented data processing • Aubinet et al. (2000), Falge et al. (2001), Foken et al. (2002), Göckede/Rebmann/Foken (2004) : general set-up and methodology, quality assurance, gap-filling • Reichstein et al. (2005), Glob. Ch. Biol.: u*-correction, gap-filling, partitioning of NEE • Papale et al. (in prep), Biogeosciences: Quality control, eval. uncertainties • Moffat et al. (in prep): Gap-filling inter-comparison • Online processing tool: http://gaia.agraria.unitus.it/lab/reichstein/

  8. Model application Model(re)formulation(Definition of model structure) Model characterization(Forward runs, consistency check, sensitivity, uncert. analysis) Model validation (against indep. data, by scale or quantity) DATA Model parameter estimation(Multiple constraint) Generalization(‘up-scaling’) Parameterinterpretation(Thinking) Ideal model-data integration cycle (bottom-up)

  9. Solar radiation Air temperature [CO2] Relative humidity Wind speed {Quantum use efficiency,electron transport and carboxylation capacities, stomatal conductance} LAI, SAI Canopy Layer 1 Canopy Layer 2 Phenology Canopy Layer 3 . . . Leaf Canopy Layer n physiology Canopy effective soil CO2 H2O CO2 Vapour pressure H2O Water extraction Precipitation Air temperature Wind speed Soil hydraulicparameters T, q, Y Soil thermalparameters Soil Layer 1 Soil Layer 2 Soil Layer 3 Soil respirationparameters T, q, Y . . . Soil Layer n Root distri-bution Soil The bottom-up model PROXEL

  10. I. Model charaterization / forward model run Well watered conditions 0.2 Eddy cov. (a) (b) 0.18 Sap flow 0.16 Modelled 0.14 0.12 H2O flux [mm/h] 0.1 0.08 0.06 0.04 0.02 0 Eddy cov. (c) (d) 12 Modelled 10 8 6 CO2 flux of GPP [µmol m-2 s-1] 4 2 0 -2 0 4 8 12 16 20 24 0 4 8 12 16 20 24 Local time [hr] Local time [hr] Drought stressed conditions Reichstein, Tenhunen et al., Global Change Biology, 2002

  11. Target region II. Dual-constraint parameter estimation Reichstein et al. 2003, JGR

  12. IIa. Inferred parameter timeseries

  13. III. Interpretation & Generalization Relative leaf activity Relative soil water content Reichstein et al. 2003, JGR

  14. 1.8 1.6 III. Interpretation and Generalization: Keyp. RUEmax 1.4 1.2 1 RUE [gC / MJ APAR] 0.8 0.6 • inter-PFT variability • intra-PFT variability • f(species, N, T???) 0.4 0.2 0 ENF EBF DBF MF Sav Oshrub Crop

  15. 29,2° W 58° E 70°N 60°N "Les Landes" 50°N 40°N 11° W 23° E IV. Validation at larger scale

  16. GCB, in press

  17. The problems

  18. To consider with DA of eddy covariance data: • How is the error structure of the data itself? • How to address mismatch of scales (‘point’ versus pixel)? • Remote sensing • Meteorological data • How do perform up-scaling from tower sites? • Representativity • Generalization

  19. Errors in the data

  20. Error model influence on parameter estimates Search strategy I II Parameter estimate Const. abs errors Const. rel. errors Simplified after Trudinger et al. (OPTIC)

  21. Errors in eddy covariance data • Random errors • ~ 30% for the half-hourly flux, (turbulences !) • Systematic errors • can be largely controlled/avoided • Selective systematic errors • Conditions where the theory does not apply: • Low turbulent conditions (night-time) • Advection • good quality control necessary • “Better few unbiased data, than a lot of biased data” • Uncertainties: mean NEE > interannual variability

  22. Characterization of the random error cf. Richardson et al. (2006)

  23. NEE [µmol m-2 s-1] 20.0 20 15 10 5 0 -5 -10 -13.0 15.00 14 12 10 8 6 4 2 0.00 Quantifying uncertainties NEE NEE_sigma Dec Dec Dec Dec Nov Nov Nov Nov Oct Oct Oct Oct Sep Sep Sep Sep Aug Aug Aug Aug Jul Jul Jul Jul NEE_sigma [µmol m-2 s-1] Jun Jun Jun Jun May May May Apr Apr Apr Apr Mar Mar Mar Mar Feb Feb Feb Feb Jan Jan Jan Jan 0 0 6 6 12 12 18 18 24 24 0 0 6 6 12 12 18 18 24 24

  24. 3133 0.40 0.30 1401 0.20 1286 0.10 371 329 168 115 75 66 44 39 39 31 20 20 15 11 10 9 1 0 3 6 3 5 5 1 1 0 0.00 -20.0 -16.9 -13.8 -10.8 -7.7 -4.6 -1.5 1.5 4.6 7.7 10.8 13.8 16.9 20.0 Error NEE [umol m-2 s-1] Error distribution of eddy covariance data

  25. Distribution of model error against eddy data Chevalier et al. (in rev.)

  26. PDF only 10am-3pm and Jun-Sep NEE error

  27. More complicated error structures

  28. Maximizing the likelihood? Bayesian approach Cost function: Trust in data Trust in apriori model parameters

  29. Spatial representation problem I • Does the tower site represent the grid cell of interest? • 0.25-2km km for MODIS/SEAWIFS remote sensing • 30-100 km for meteorological fields • 30-100 km for DGVMs, BGCs applied in global context

  30. Aerial photo Landsat MODIS Spatial heterogeneity... 1 km

  31. It‘s not always so bad... TM3 coeff. of variation • TM 3,4,7 • MODIS 1,2,7 Dinh et al., subm.

  32. Spatial representation problem II • Does the network of tower sites represent the spatial domain of interest or are there chances to generalize with scaling variables?

  33. fAPAR [MODIS-RT)  We have to have up-scaling strategies Day of the year

  34. Conclusions • Eddy covariance data contains a lot of interpretable information on both carbon and water cycle • Inclusion of pools and fluxes for system understanding and for linking short and long time-scales necessary • Major challenge within eddy data • Characterization of the error (random, bias) • Scale and representativeness problem • Interpret. & Generalization of site specific parameters • Documentation of site dynamics, that may violate model structure (e.g., soil water, management)

  35. Conclusions

More Related