240 likes | 363 Vues
This paper presents a user-friendly and efficient application for predicting datum changes in low order geodetic networks using spatial techniques, specifically the transformation between ED50 and ETRS89. The method simplifies transformation processes, accommodating large volumes of spatial data while effectively modeling regional perturbations. By implementing a 7-parameter transformation model and regression controls, the study ensures accuracy in distortion prediction across heterogeneous geodetic environments. The case study in Castilla-La Mancha demonstrates significant advancements in the re-adjustment and alignment of the network with an emphasis on minimizing distortion.
E N D
GRID ESTIMATION. APLICATION TO DATUM DISTORTION MODELLING Javier Glez. Matesanz Adolfo Dalda Mourón Instituto Geográfico Nacional
National Network using Spatial Techniques ED50-ETRS89 Differences • REGENTE (Regidor 2001)
Low Order Network • Objective: • Predict datum changes in the low order network
Objectives • One transformation • Simple to apply • Friendly for any spatial information data user • Efficient, capable of transforming great amounts of data • SIG funcionality • Capable of imitate a re-adjustment of a network, changes in shape and systematic effects. • Removing distortions due to regional perturbations of local geodetic networks (Collier 1992)
7Parameters transformation • Spatial Coord. • Geoidal model • Heterogeneity • 2 areas: • NW • rest
7 PARAMETER • Difficulties finding unique transformation • Simply to apply. Geoid • Efficient
Polynomial transformation • Real and complex variables • Heterogeneous behavior absorbing • Unique transformation • Regression models controls
Polynomial transformation • Complex variable
Polynomial transformation Real variables
Polynomial transformation • Comparison • Truth “REGENTE” • Complex V. • Real V.
Distortion modelling Prediction
Minimum Curvature Surface method • Metal plate behaviour • Soft surface
Minimum Curvature Surface method Ie. NADCON
Rubber Sheeting method • T. Delaunay • Ie Great Britain
Rubber Sheeting method • T. Delaunay. • Virtual points needed to allow linear behaviour out of the border
Least Squares Collocation • Mmcc prediction • Signal estimation • Ax=K+s+n • Ie Australia, Canada Longitude Covariance
TEST AREA (Castilla La Mancha) (JSSobrino 2002) • Readjustment of low order network in ETRS89 • ~1400 external points. Not taken into account to build the tree grids
Comparison • Test Castilla La Mancha • Overall goodness of fit
Points < 25cm MCS LSC Rubber Sheeting