1 / 27

Rotational Dynamics Angular Momentum. Collisions.

Rotational Dynamics Angular Momentum. Collisions. Rotational Dynamics Basic Concepts Rotation Angular speed Torque Angular Acceleration Nature of Angular Momentum (& Energy), origins Angular Momentum Conservation Angular Momentum for a system of bodies Parallel Axis Theorem.

callia
Télécharger la présentation

Rotational Dynamics Angular Momentum. Collisions.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rotational Dynamics Angular Momentum. Collisions. • Rotational Dynamics • Basic Concepts • Rotation • Angular speed • Torque • Angular Acceleration • Nature of Angular Momentum (& Energy), origins • Angular Momentum Conservation • Angular Momentum for a system of bodies • Parallel Axis Theorem

  2. Lecture 8 • Aim of the lecture • Concepts in Rotational Dynamics • Angular speed, torque, acceleration • Dependence on mass • Dependence on radius of mass, • Moment of Inertia • Dependence on rotation speed • Newton’s Second Law • Conservation of angular momentum •   Main learning outcomes • familiarity with • w, t, dw/dt, I, L, including vector forms • Use of energy and angular momentum conservation • Calculation of moment of inertia

  3. Basic Concepts – Angular Position y • Rotational Dynamics • Systems rotating about fixed axis • Use r and q to describe position • Natural quantities for rotation • For Rigid Body Rotation • r is fixed • m moves in a circle m r The position of the mass is (r,q) or (x,y) they both give same information q x Centre of rotation (axis pointing out of page)

  4. Basic Concepts – Angular Rotation y • Rotation – ‘massless’ rod with mass • Mass moving with speed v • r is fixed • q changes with time • This is Rigid Body Rotation • m moves in a circle • angular speed is called w (see next slide) v m r The position of the mass (r,q) depends on time (r,q) = (r,wt) q x Centre of rotation (axis pointing out of page)

  5. Basic Concepts – Angular Speed • The mass is rotation round • say f revolutions per second • f is the frequency of rotation • f is measured in Hertz, Hz • the time for one revolution is 1/f • q depends on f and time • There are 2p radians in a circle, so • the number of radians per second is • 2p f = w the angular speed • w is measured in radians per second • w = (change in angle)/(time taken) y v m r q (r,q) depends on time (r,q) = (r,wt) x Centre of rotation (axis pointing out of page)

  6. For a 98 TVR ceberacar the maximum Engine rpm is 6250 (same for all colours) 6250rpm = 6250/60 revs per second = 104 Hz = f = 104 x 2p = 655 rads/sec = w

  7. For dancer, the maximumrpm is much lower, about 60 rpm 60rpm = 1 Hz = f = 2p rads/sec= w

  8. Rotation is extremely common, it is measured in • rpm, • Hertz (frequency of rotation) or • radians per second (angular speed)

  9. Then here Look here Its not really rotating, so its angular speed is w = 0

  10. Basic Concepts – Angular Speed • The mass is moving • at speed v • at radius r • with angular speed w y v m In time Dt, m moves vDt Which changes the angle (in radians) by vDt/r So w = angle/time = vDt/rDt = v/r r w = v/r q (r,q) depends on time (r,q) = (r,wt) x Centre of rotation (axis pointing out of page)

  11. w = v/r In fact whilst w is the angular speed, thereis also a vector form, called the Angular velocity. As above. Its direction is along the axis of rotation, such that the object is rotating clockwiselooking along the vector w

  12. Basic Concepts - Torque • To make an object rotate about an axis • Must apply a torque, • A force perpendicular to the radius A torque in rotation is like a force in linear motion dA A torque is a perpendicular force times a radius tA = FAdA tB = FBdB dB

  13. Only the perpendicularcomponent mattersso here the torque is t = rFcos(q) Centre of rotation

  14. A high torque is needed for car wheel bolts This is achieved witha long lever A short lever would notwork, wheel would fall off UNLESS the force was much bigger Torque is a ‘twisting force’ Distance matters: • The same torque can be achieved with • a long lever and small force • a short lever and a large force

  15. Basic Concepts – Angular Acceleration Linear: F = mdv/dt = ma Rotation: t = Idw/dt = Iw = I • You can accelerate, ‘spin up’ a rotating object • by applying a torque, t • the rate of angular acceleration = t/I where I is the moment of inertia (see later) • Moment of inertia is like mass in the linear case

  16. Torque is actually a vector • Direction is perpendicular to: • Force being applied • It is parallel to: • The axis of rotation Torque is pointing INTOthe page [the direction ascrew would be driven] F

  17. t = I dw/dt = I This is the vector form for the relationship between torque and angular acceleration ( In advanced work, I is a tensor, butin this course we will just use a constant )

  18. Angular Momentum • Conserved Quantities • If there is a symmetry in nature, then • There will be a conserved quantity associated with it. • (the maths to prove this is beyond the scope of the course) • Examples: • Physics today is the same as physics tomorrow, • TIME symmetry • The conserved quantity is Energy • Physics on this side of the room is the same as on the other side • Linear Translational symmetry • The conserved quantity is called Momentum • Physics facing west is the same as physics facing east • Rotational symmetry • The conserved quantity is called Angular Momentum • What is angular momentum? • For a mass m rotating at speed v, and radius r the angular momentum, L is L = mrv (= Iw) Centre of rotation r v

  19. Angular Momentum • This is (in fact) a familiar quantity: • A spinning wheel is hard to alter direction • A gyroscope is based on conservation of angular momentum • The orbits of planets are proscribed by conservation of a.m. • It is claimed that gyroscopic effects help balance a bicycle

  20. Angular Momentum L = mrv Centre of rotation r v • The angular momentum will depend on • the mass; the speed; • AND the radius of rotation • The radius of rotation complicates things • extended masses (not just particles) have more than one radius • each part of such a mass will have a different value for mr • and a different speed • The train rotates around theturntable axis. • The cab is close to the axis, • r is small, v is small • contributes little to L. • The chimney is far from axis • high r, higher v • will contribute more.

  21. To simplify things we use the angular rotation speed, w • Where w = radians per second or 2p (rotations per second) • w = 2p (v/2pr) • = v/r in radians per second [see earlier slides] • So we can write v = wr • and L = (mr2)w • The quantity in brackets (mr2) is called the moment of inertia • It is given the symbol I. • I = mr2 for a single mass • [ I = r2dm for an extended body ] ∫ v

  22. Angular Momentum L = mrv = (mr2)w Centre of rotation r v • The moment of inertia, (mr2) is • given the symbol I • can be calculated for any rigid (solid) body • depends on where the body is rotating around • The usual formula for angular momentum is L = Iw • In rotational dynamics there is a mapping from linear mechanics • replace m by I • replace v by w • replace P by L • then many of the laws of linear mechanics can be used • For example: • momentum P = mv so L = Iw • kinetic energy, E = mv2/2 so E = Iw2/2

  23. Moments of Inertia • Some examples of moment of inertia are: • A disk rotating around its centre I = mr2/2 (if it rotates about the y axis it is I = mr2/4) • A sphere rotating around any axis through the centre, I = 2mr2/5 • A uniform road of length L rotating around its centre I = mL2/12 • A simple point mass around an axis is the same as a hollow cylinderI = mr2

  24. Vector Form L • Angular Momentum is a vector • The magnitude of the vector is L = Iw • The direction is along the rotation axis looking in the direction of clockwise rotation • L = Iw • Note that this vector does NOT define a position in space • Clearly w is also a vector quantity with a similar definition

  25. For several objects considered together ‘a system’ • The total angular momentum is the sum of the individual momenta • L = Sli • Where: • li is the angular momentum of the ith object • S means ‘sum of’ • L is the total angular momentum

  26. But NOT this one Parallel Axis theorm L • Angular Momentum is a vector • The angular momentum vector does NOT define a position in space • The parallel axis theorem says that any rotating body has the same angular momentum around any axis. [NOT changing the rotation axis!] This spinning shell has the same A.M. about all the blue axes shown (without moving the shell, position does not matter)

  27. Conservation • The total angular momentum is conserved • Entirely analogous to linear momentum • Spins in opposite directions have opposite signs As the circling air drops lower, r decreases so w goes up – a tornado As pirouetting skaterpulls in arms, w increases

More Related