E N D
1. Random Convolution in Compressive Sampling Michael Fleyer 
2. Standard Sampling Nyquist/Shannon sampling:
 
3. Compressive Sampling 
4. Compressive Sampling (cont.) 
5. CS example (Compressive Sensing Richard Baraniuk Rice University, Lecture Notes in IEEE Signal Processing MagazineVolume 24, July 2007) 
6. Sparsity 
7. Sparsity (cont.) 
8. Incoherence 
9. Incoherence (cont.) 
10. CS-required properties 
11. Sparse signal recovery 
12. Reconstruction conditions 
13. Linear Programming 
14. Example 
15. Robust CS 
16. RIP and CS 
17. General signal recovery 
18. Recovery from noisy signals 
19. Random sensing 
20. Random sensing (cont.) 
21. CS main results 
22. CS by random convolutionCompressive Sensing By Random ConvolutionJustin Romberg, submitted to SIAM Journal on Imaging Science 
23. CS by random convolution (cont.) 
24. CS by random convolution (cont.) 
25. Subsampling 
26. Applications 
27. Applications (cont.) 
28. Applications (cont.) 
29. Coherence bounds 
30. Cumulative coherence 
31. Main Results 
32. Example