1 / 15

Quadratic Formula and the Discriminant

Quadratic Formula and the Discriminant. Essential Questions. How do I use the QUADRATIC FORMULA to solve equations? How do I use the DISCRIMINANT to determine the # of solutions and the factorability for a quadratic equation?. Warm Up. Evaluate each expression. 1) 6 2 – 4(1)(3)

cheng
Télécharger la présentation

Quadratic Formula and the Discriminant

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quadratic Formula and the Discriminant

  2. Essential Questions • How do I use the QUADRATIC FORMULA to solve equations? • How do I use the DISCRIMINANT to determine the # of solutions and the factorability for a quadratic equation?

  3. Warm Up • Evaluate each expression. • 1) 62 – 4(1)(3) • 2) 22 – 4(1)(-3) • 3) • Answers: 24, 16, -1

  4. I will learn to… 10.5 The Quadratic Formula • Use the quadratic formula to find solutions to quadratic equations. • Evaluate the discriminant to determine how many real roots a quadratic equation has (how many solutions there will be).

  5. Vocabulary 10.5 The Quadratic Formula Quadratic Formula: formula used to solve a quadratic equation. Always works! Normally used when you CANNOT factor. Discriminant: expression from the quadratic formula that helps you determine how many real solutions there will be in the quadratic equation. If D < 0 : No Real Solutions If D = 0: Exactly One Real Solution If D > 0: Two Real Solutions

  6. –b b2 – 4ac x = 2a Rules and Properties 10.5 The Quadratic Formula The Quadratic Formula For ax2 + bx + c = 0, where a 0: b2 – 4ac The Discriminant:

  7. –b b2 – 4ac x = 2a Example 1 • Solve using the quadratic formula. 2x2 + 5x + 1 = 0 a = 2, b = 5, c = 1 Plug in!!

  8. Example 2 Solve:3x2 + 2x – 4 = 0 • Can you factor it? • NO • Use the quadratic formula! • A: 3 B: 2 C: -4

  9. Example 2 Continued A: 3 B: 2 C: -4

  10. –5  52 – 4(1)(–8) x = = –5  57 2(1) 2 Example 3Solve using Quad. Formula x2 + 5x – 8 = 0 (this can’t factor!!) a = 1, b = 5, c = –8

  11. You Try • Solve using the quadratic formula. 3x2 – 4x – 2 = 0 a = 3, b = -4, c = -2

  12. “You Try” Continueda = 3, b = -4, c = -2

  13. Ex. 4) Find the # of real solutions. • Remember use the discriminant, b2 – 4ac. • 3x2 – 2x + 1 = 0 • (-2)2 – 4(3)(1) • 4 – 12 • -8 • There are NO real solutions! • By finding the discriminant FIRST ALWAYS, you can save yourself some time if its not workable! • And if you DO discover there are some solutions, you have just already completed part of the Q.F.!  So, you didn’t waste time here either.

  14. More with a +Discriminant • If the discriminant is a perfect square then the equation is factorable! • Don’t use the quadratic formula if you can factor…it is a waste of time. • Ex. If D = 49 you can factor to solve. • Ex. If D = 48 you can only use Q.F.

  15. Think About It • What part of the Q.F. is the discriminant? • The part under the radical!!

More Related