1 / 19

A prototype Global Carbon Cycle Data Assimilation System (CCDAS)

A prototype Global Carbon Cycle Data Assimilation System (CCDAS). Marko Scholze 1 , Wolfgang Knorr 2 , Peter Rayner 3 ,Thomas Kaminski 4 , Ralf Giering 4. 1. 2. 3. 4. Overview. Top-down vs. bottom-up Gradient method and optimisation Results: Optimal fluxes

chibale
Télécharger la présentation

A prototype Global Carbon Cycle Data Assimilation System (CCDAS)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze1, Wolfgang Knorr2, Peter Rayner3,Thomas Kaminski4, Ralf Giering4 1 2 3 4

  2. Overview • Top-down vs. bottom-up • Gradient method and optimisation • Results: Optimal fluxes • Uncertainties in parameters + results • Uncertainties in fluxes + results • Possible assimilation of flux data • Conclusions and Outlook

  3. inverse atmospheric transport modelling net CO2 fluxes at the surface climate and other driving data Top-down / Bottom-up atm. CO2 data process model

  4. Misfit to Observations Parameters: 58 Adjoint or Tangent linear model:  Misfit / ∂ Parameters Atmospheric Transport Model: TM2 Fluxes: 800,000 parameter optimization Biosphere Model: BETHY Station Conc. 6,500 Misfit 1 Carbon Cycle Data Assimilation Forward modelling: Parameters –> Misfit

  5. First derivative (Gradient) of J(m) w.r.t. m (model parameters) : –∂J(m)/∂m yields direction of steepest descent Space of m (model parameters) Cost Function J(m) Gradient Method Figure taken from Tarantola '87

  6. Carbon Cycle Data Assimilation System (CCDAS) Assimilated Prescribed Assimilated CO2 + Uncert. veg. index satellite + Uncert. Phenology Hydrology CCDAS Step 2 BETHY+TM2 only Photosynthesis, Energy&Carbon Balance CCDAS Step 1 full BETHY Background CO2 fluxes* Optimized Params + Uncert. Diagnostics + Uncert. * * ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990)

  7. BETHY(Biosphere Energy-Transfer-Hydrology Scheme) lat, lon = 2 deg • GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) • Raut: maintenance respiration = f(Nleaf, T) – Farquhar, Ryan (1991) growth respiration ~ NPP – Ryan (1991) • Rhet: fast/slow pool resp. = wkQ10 T/10 C fast/slow / t fast/slow • slow –> infin. average NPP = b average Rhet (at each grid point) t=1h t=1h t=1day b<1: source b>1: sink

  8. Optimisation

  9. Major El Niño events Major La Niña event Post Pinatubo Period global fluxes Optimised fluxes (1)

  10. correlation between Niño-3 SST anomaly and net CO2 flux shows maximum at 4 months lag, for both El Niño and La Niña states lag correlation (low-pass filtered) Optimised fluxes (2) normalized CO2 flux and ENSO ENSO and terr. biosph. CO2: correlation seems strong

  11. flux sites? net CO2 flux to atm. gC / (m2 month) during El Niño (>+1s) lagged correlation at 99% significance -0.8 -0.4 0 0.4 0.8 Optimised fluxes (3)

  12. Second Derivative (Hessian) of J(m): ∂2J(m)/∂m2 yields curvature of J, provides estimated uncertainty in mopt J(x) Space of m (model parameters) Error Covariances in Parameters Figure taken from Tarantola '87

  13. examples: measurements model diagnostics error covariance matrix of measurements Error covariance of parameters after optimisation: = inverse Hessian Error Covariances in Parameters Cost function (misift): assumed model parameters a priori covariance matrix of parameter + model error a priori parameter values

  14. Relative Error Reduction

  15. Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO2 fluxes): adjoint or tangent linear model error covariance of parameters

  16. Regional Net Carbon Balance and Uncertainties

  17. a priori mean/uncertainties a posteriori mean/uncertainties Comparison shows impact of a (pseudo) flux measurement in the broadleaf evergreen biome on Q10 estimated by an inversion of SDBM: Upper panel: only concentration data Lower panel: concentration data + pseudo flux measurement (mean: as predicted sigma: 10gC/m^2/year) Details: Kaminski et al., GBC, 2001

  18. Conclusions • CCDAS with 58 parameters can already fit 20 years of CO2 concentration data • Sizeable reduction of uncertainty for ~13 parameters • terr. biosphere response to climate fluctuations dominated by ENSO • System can test model with uncertain parameters, and deliver a posteriori uncertainties on parameters, fluxes

  19. Outlook • explore more parameter configurations • include fire as a process with uncertainties • need more constraints, e.g. eddy fluxes –> reduce uncertainties • however: needs to solve scaling problem (satellites?) • approach can be regionalized easily • extend approach to ocean carbon cycle • projection of uncertainties into future

More Related