1 / 96

Mechanical Properties of Materials

材料力学性能. Mechanical Properties of Materials. Prof : Li Min Tel : 86057927 ( 2#333 ) 13863933539 E-Mail : kd_limin@126.com. Department of Material Science and Engineering. Mechanical Properties of Materials. Chapter Ⅰ. Mechanical property under a unidirectional

Télécharger la présentation

Mechanical Properties of Materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. 材料力学性能 Mechanical Properties of Materials Prof: Li Min Tel: 86057927 ( 2#333 ) 13863933539 E-Mail:kd_limin@126.com Department of Material Science and Engineering Mechanical Properties of Materials

  2. Chapter Ⅰ Mechanical property under a unidirectional static tensile force  Force-Elongation Curve and Stress-Strain Curve  Elastic Deformation  Plastic Deformation  Fracture Chapter Ⅰ

  3. §1.1Force-Elongation Curve and Stress-Strain Curve 力-伸长曲线和应力-应变曲线 1. The tensile test ( GB/T228-2002 ) perfect specimen a unidirectional static or slowly tensile force room-temperature and ambient air Chapter Ⅰ

  4. 扎克船用锅炉 Chapter Ⅰ

  5. 莱钢锚链 Chapter Ⅰ

  6. Automated tensile testing machine Localized deformation of the ductile material 2. Force-Elongation curve and Stress-Strain curve Material: annealed (退火)low carbon steel Chapter Ⅰ

  7. Deformation process of polycrystalline materials • Deformation process of industrial material consists of three stages: • Elastic deformation, which is reversible Plastic or permanent deformation Fracture Chapter Ⅰ

  8. Engineering stress-strain curve Aluminum alloy PVC Glass Composite Chapter Ⅰ

  9. e/ % True stress-strain curve of typical metals True stress-strain curve Chapter Ⅰ

  10. Terminology: Engineering stress 工程应力σ Engineering strain 工程应变ε True stress 真实应力S True strain 真实应变e The relation between the true stress-true strain and engineering stress-engineering strain? Chapter Ⅰ

  11. The relation between the true stress-true strain diagram and engineering stress-engineering strain diagram. The curves are identical to the yield point(屈服点). Chapter Ⅰ

  12. Summary: Tensile test Engineering stress-strain True stress-strain True stress and true strain calculation Question: Properties obtained from the tensile test? Chapter Ⅰ

  13. §1.2 Elastic Deformation(弹性变形) 1.Features and physical principle Reversibility(可逆性), monodromy(单值性), small deformation External force Attractive force(引力) Repulsive force(斥力) Fext + Fatt + Frep = 0 Elastic behavior is related to atomic bonding forces. Double atomic model Chapter Ⅰ

  14. §1.2 Elastic Deformation(弹性变形) 2. Hooke’s Law Chapter Ⅰ

  15. §1.2 Elastic Deformation(弹性变形) 2. Hooke’s Law Chapter Ⅰ

  16. 3. Elastic Properties  modulus of elasticity—stiffness of materials 弹性模量—材料的刚度 A stiff component(构件), with a high modulus of elasticity, will show much small changes in dimensions if the applied stress is relative small and cause only elastic deformation. Young’s modulus E Shear modulus G Poisson’s ratio ν Chapter Ⅰ

  17. Modulus of elasticity is considered microstructure insensitive property since the value is dominated strongly by the strength of atomic bonds. Melting point, Debye characteristic temperature 弹性模量是一个对组织不敏感的力学性能指标。合金化、压力加工、热处理、细化晶粒、温度、加载速率等都不能对其产生明显影响。 Chapter Ⅰ

  18. proportional limit and elastic limit 比例极限和弹性极限 Proportional limit(p):the level of stress above which the relationship between stress and strain is not linear Elastic limit(e):the critical stress value needed to initiate plastic deformation “Specified elastic limit 0.01”――the stress value corresponding to 0.01%offset elongation(残余伸长) Chapter Ⅰ

  19. e ε 0 εe • modulus of resilience (弹性比功 ) The elastic energy that a material absorbs during loading and subsequently releases when the load is removed. -在开始塑性变形前单位体积所能吸收的最大弹性变形功; -储备弹性能的能力; Chapter Ⅰ

  20. Discussion: 1、The ability of a spring(弹簧) to perform satisfactorily depends on high/or low modulus of resilience? 2、What materials are selected on the spring? 3、How to change the modulus of resilience? Chapter Ⅰ

  21. 举例: 没有满载,变形却达到最大 汽车弹簧 使用一段时间,弓形↓↓ 分析:产生上述现象的原因?如何改善? 重点:区分弹性与刚度两个概念 Chapter Ⅰ

  22. 哪些材料会出现明显的滞弹性? 4. anelasticity(滞弹性) Time–dependent elastic strain 快速加载或卸载后,随时间延长产生附加弹性应变的现象。 组织不均匀, 滞弹性倾向增大 Chapter Ⅰ

  23.  ε ε 0 0 加载和卸载时的应力应变曲线不重合形成一封闭回线 ------弹性滞后环 elastic hysteresis loop Energy absorbed by materials internal friction 内耗(消振性) Chapter Ⅰ

  24. Engineering examples:  music wire  machine body  turbine blade Chapter Ⅰ

  25.  1 30.1 24.0 4 8.5 0 ε 17.8 2 28.7 3 5. Bauschinger effect(包申格效应) 产生了少量塑性变形(残余应变为1%-4%)的材料,再同向加载则弹性极限(屈服强度)升高;反向加载则弹性极限(屈服强度)降低的现象。 Annealed rolled brass Chapter Ⅰ

  26. X80高强度管线钢的生产工艺流程  在工程应用上,材料的成型加工工艺需考虑包申格效应; 大型输油输气管道管线的UOE工艺 Chapter Ⅰ

  27. 利用包申格效应? 薄板的反向弯曲变形 Chapter Ⅰ

  28. 消除方法: 预先进行较大的塑性变形; 在第二次反向受力前先使其在回复或再结晶 温度下退火; 超弹性 ( hyperelasticity ) 粘弹性 ( viscoelasticity ) Chapter Ⅰ

  29. summary: 1、property index:E、 p、 e、 0.01、ae 2、“elasticity” and “stiffness” 3、engineering application of anelasticity and Bauschinger effect Chapter Ⅰ

  30. §1.3 Plastic deformation(塑性变形) 1. Deformation mode and features  Plastic deformation in single crystalline materials  slip (滑移)  Twinning (孪生) Basic feature of slip and twinning Both slip and twinning are shear processes under shear stresses, i.e. it is a translational movement of one portion of the crystal with respect to the other on a specific plane and along a specific direction. Chapter Ⅰ

  31. slip twinning

  32. Basic distinction between single crystal and polycrystals • A great deal of grains with different orientation • Grain boundary  Basic features of plastic deformation of polycrystal Nonsimultaneous and inhomogenous 不同时性和不均匀性  Interaction and intercoordination 相互制约和相互协调 Chapter Ⅰ

  33. 2. 屈服现象 ( yield phenomenon ) 外力不增加,试样仍能继续伸长,或外力增加到一定数值后突然下降,随后在外力不增加或上下波动的情况下,试样继续伸长变形。 Chapter Ⅰ

  34.  Explanation of yield phenomenon Cottrell atmospheretheory 柯氏气团理论 Dislocation propagation theory 位错增殖理论 Chapter Ⅰ

  35.  yield strength 规定非比例伸长应力(p):试样标距部分的非比例伸长达到规定的原始标距百分比时的应力。 规定总伸长应力(t):试样标距部分的总伸长(弹性+塑性伸长)达到规定的原始标距百分比时的应力。 规定残余伸长应力(r):试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。 “条件屈服强度0.2”---- 试样残余伸长量为标距长度的 0.2%时的应力。 0.2%-offset yield strength Chapter Ⅰ

  36. Discussion:  Advantage and disadvantage of sharp yield?  Engineering application of yield strength Strength design of component The relationship between yield strength and processing property Chapter Ⅰ

  37. 3. Factors affecting yield strength Dislocation population and motion Grain boundary, composition, second phase External factors  Influence of crystal structure A、lattice obstacle : B、interaction obstacle of dislocation: Chapter Ⅰ

  38. 细晶强化  Grain size (晶粒大小) Grain boundary resistance----Hall—Petch equation: Technological method? Grain refinement strengthening Chapter Ⅰ

  39.  Solute element(溶质元素) Solid solution strengthening (固溶强化) It is caused by increased resistance to dislocation motion. Increasing both atomic size difference and amount of alloying element increases solid-solution strengthening. • 间隙固溶体的强化效果比置换固溶体的大! Interstitial solid solution , substitutional solid solution Chapter Ⅰ

  40. Deforming particles Nondeforming particles 切过机制 绕过机制  Second phase particle(第二相粒子) Dispersion or precipitation strengthening Chapter Ⅰ

  41. Ni合金中位错绕过Ni3Al相的电镜照片 Chapter Ⅰ

  42.  External factors  temperature  strain speed  stress state Chapter Ⅰ

  43. 10μm 10μm 10μm 10μm (a) (b) ) (c) c) (d) d) (a)鲱骨状共晶组织; (b)鱼骨状共晶组织; (c)粒状共晶组织; (d)蜂窝状共晶组织; Chapter Ⅰ

  44. (b) (a) (a) (c) Chapter Ⅰ

  45. Cr V Ni Si Ti Nb Fe-Cr-V-Ti-Ni-Nb-Si-B-C系表面冶金涂层时效组织的成分面扫描

  46. 4. Work hardening or strain hardening 应变硬化(形变强化、加工硬化) 当外力超过屈服强度后,塑性变形并不是象屈服平台那样继续流变下去,而需要不断地增加外力才能继续进行。 自行车链条(16Mn钢板): 原始厚度3.5mm 150HB b=520MPa 五次冷轧后1.2mm 275HB b>1000MPa Applications: Cold drawing wire冷拔高强度钢丝and cold coiling冷卷弹簧; 坦克和拖拉机的履带(track)、破碎机的颚板(jaw plate) 以及铁路的道岔(switch); Chapter Ⅰ

  47. S-e曲线:流变曲线(均匀塑变阶段) Hollomon 关系式 硬化系数 应变硬化指数 Chapter Ⅰ

  48. e n的变化范围  Strain-hardening exponent 应变硬化指数 n――反映材料抵抗继续塑性变形的能力,反映了形变强化的趋势,表征材料应变硬化的性能指标。 n值愈大,材料对继续塑性变形的抗力愈高。 完全的弹性体 n的测定: 无应变硬化 Chapter Ⅰ

  49.  Engineering significance of strain hardening  Advantages: Strength, hardness, wear-resistance↑ Reliability↑ Necessary condition of cold-working (forming) Ductility ↓and machinability ↑  Disadvantage: Continuous forming becomes difficult. Chapter Ⅰ

  50. 喷丸处理后的截齿 Chapter Ⅰ

More Related