1 / 6

Effect of Mass Transport on The Adsorption of Albumin on the Gold Surface

Effect of Mass Transport on The Adsorption of Albumin on the Gold Surface. D. Yu 1 , S.-Y. Kim 1 , Y. Cho 2 , J. Y. Lee 2 , H. J. Kim 2 , and J. W. Kim 2 1 Department of Physics Kangwon National University 2 Biomedlab Co. Effect of Mass Transport.

cole-rose
Télécharger la présentation

Effect of Mass Transport on The Adsorption of Albumin on the Gold Surface

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Effect of Mass Transport on The Adsorption of Albumin on the Gold Surface D. Yu1, S.-Y. Kim1, Y. Cho2, J. Y. Lee2, H. J. Kim2, and J. W. Kim2 1 Department of Physics Kangwon National University 2 Biomedlab Co. • Effect of Mass Transport Using the SPREETATM that is a SPR based sensor, we studied the effect of mass transport on the adsorption of albumin to the gold surface. The mass transport effect dominates the adsorption rate when the binding of albumin onto the gold surface becomes more dominant than the diffusion of albumin near the surface. • Expectation effect Under completely transport-limited conditions initial binding rates can be expected to increase in parallel with the flow rate1/3.

  2. Protein solution Surface plasmon wave (Ksp) Metal Evanescent wave (Kev) Prism 2D-detector array Light(ω) Resonance: Surface plasmon wave vector( ) = Evanescent wave vector( ) At resonance angle, incident light dramatically decreases. Reflectivity Refractive index( ) from resonance angle: , angle Surface Plasmon Resonance

  3. C C ri a A compartment model for ligands binding to receptors on spherical surface of radius a. The space outside the sphere is divided into an inner region a< r ≤ ri, where the ligand concentration is C and outer region, r > ri, where the ligand concentration equals the bulk concentration C. Mass Transport Mass transport effects occur when the binding rate of analyte to the ligand is higher than diffusion of analyte to the surface. Flow rate is experimental parameter that can be controlled to minimize mass transport effects. Compartment models

  4. V : denote the volume of inner compartment. A : the surface area of the cell. R : the concentration of free receptors on the cell surface. C : free ligand concentration in the inner compartment. B : bound ligand concentration on the cell surface. C : bulk concentration. Calculation of Mass transport coefficient(km) Att=0, dC/dt=0 (initial condition)

  5. Experiment Result Response Unit data on flow rate Relation between flow rate and initial binding rate The initial binding rate was clearly influenced by changes in the flow rate.

  6. Discussion The initial binding rate was found to be proportional to flow rate1/3, which is in good accordance with theoretical expectations. We also found the reaction was dependent on flow rate, which provides further support for the mass transport limited model. A benefit of the mass transport is that it may be used to determine the amount concentration of analyte. The investigation of the mass transport effect may help to understand the fluidics.

More Related