1 / 117

HLAB meeting

HLAB meeting. Status Report Toshi Gogami 1/Nov/2011. JLab E05-115 collaboration, 2009, JLab Hall-C. Contents. ( e,e’K + ) experiments in JLab & Mainz. JLab E05-115 (2009) The number of events for high multiplicity data. JLab & Mainz. e + p ➝ e’ + K + + Λ.

dafydd
Télécharger la présentation

HLAB meeting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HLAB meeting Status Report Toshi Gogami 1/Nov/2011 JLab E05-115 collaboration, 2009, JLab Hall-C

  2. Contents • (e,e’K+) experiments in JLab & Mainz. • JLab E05-115 (2009) • The number of events for high multiplicity data

  3. JLab & Mainz e + p➝ e’ + K+ + Λ

  4. Spectroscopic experiment by (e,e’K+) reaction pe’ e + p➝ e’ + K+ + Λ Feynman diagram e- e’-Spectrometer e e u u γ* K+ – γ* u s Coincidence p Missing Mass HHY d s p K+ u Λ Λ d n K+-Spectrometer pK+ target nucleus • Large Momentum transfer • Λ can be bounded in deeper orbit • Λ’s spin at forward angle • Spin flip ~ spin non-flip • Proton  Λ,Σ0 • Absolute mass scalecalibration

  5. Experimental setup of JLab E05-115 p(e,e’K+)Λ,(Σ0) HES e’ Splitter Magnet HKS K+

  6. Experimental setup of JLab E05-115 Data taking : Aug-Nov 2009 p(e,e’K+)Λ Tracking 2×10-4 7 [msr] 3 – 12 [deg] 2×10-4 8.5 [msr] 2 – 12 [deg] 7Li , 9Be , 10B , 12C , 52Cr ( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV ) 2 - 50 [μA] 10 - 300 [THz] CH2, H2O

  7. Discrepancy of Number of Λ CH2 Target H2O Target Λ Λ • The number of Λ • NΛ ¼ Nexpect • The number of Λ • NΛNexpect Lost events that we are interested in in tracking procedure. Very preliminary Very preliminary Σ0 Σ0 12C quasi-free 16O quasi-free Acc. b.g. Acc. b.g. REAL DATA REAL DATA Black : hit wires Blue : selected wires Red : track Black : hit wires Blue : selected wires Red : track ECT*/JSPS core to core, T.Gogami (2011)

  8. New tracking code

  9. Results of Introduction of new Tracking Code CH2 • NΛ¼ Nexpect  NΛ½ Nexpect Increased ! 52Cr Increased ! H2O

  10. For further improvement • Efficiency • Tracking • TOF detectors • Discarded events

  11. Rates of the KDC wires 52Cr, 77124 KDC1-u KDC1-u’ KDC1-x KDC1-x’ KDC1-v KDC1-v’ 52Cr, 77124 < 510 kHz < 350 kHz Rate [kHz] 77124 ( 52Cr target ) KDC2 KDC1 Wire Number 5 × 5 ~11 MHz ~22 MHz KDC2-u’ KDC2-x KDC2-x’ KDC2-v KDC2-v’ KDC2-u < 290 kHz < 230 kHz

  12. Rates of the HKS TOF detectors

  13. Events which are discarded KDC2 KDC1 52Cr, 77124

  14. Events which are discarded KDC2 • Where and why are these events discarded ? • Are these events threw away bycorrect cut condition? KDC1 52Cr, 77124

  15. Summary • Need to improve analysis code for high multiplicity data • Efficiencies • Rescue discarded events

  16. END JLab Hall-C circuit room, 5/Nov/2009

  17. Backup

  18. Decay Pion Spectroscopy to Study -Hypernuclei Direct Production e’ Example: K+ 12C e * Ground state doublet of 12B B and  p  12B  E.M. 12Bg.s. Hypernuclear States: s (or p) coupled to low lying core nucleus 2- ~150 keV 1- 0.0 -  12C Weak mesonictwo body decay

  19. Decay Pion Spectroscopy for Light and Exotic -Hypernuclei Fragmentation Process Example: e’ K+ Access to variety of light and exotic hypernuclei, some of which cannot be produced or measured precisely by other means 12C e * Fragmentation (<10-16s) p s 12B* 4H  4Hg.s. Highly Excited Hypernuclear States: s coupled to High-Lying core nucleus, i.e. particle hole at s orbit   -  Weak mesonictwo body decay (~10-10s)   4He

  20. Spectroscopic experiment by (e,e’K+) reaction pe’ e + p➝ e’ + K+ + Λ Feynman diagram e- e’-Spectrometer e e u u γ* K+ – γ* u s Coincidence p Missing Mass HHY d s p K+ u Λ Λ d n K+-Spectrometer pK+ target nucleus • Large Momentum transfer • Λ can be bounded in deeper orbit • Λ’s spin at forward angle • Spin flip ~ spin non-flip • Proton  Λ,Σ0 • Absolute mass scalecalibration

  21. JLab E05-115 experimental setup e + p → e’ + Λ + K+ 7Li , 9Be , 10B , 12C , 52Cr 2×10-4 7 [msr] 3 – 12 [deg] 2×10-4 8.5 [msr] 2 – 12 [deg] • (e,e’K+) experiment • Coincidence experiment (K+ and e-) • Small cross section ( ~100 [nb/sr] ) 1/1000 • Energy resolution Sub MeV (FWHM) • Primary beam • High intensity • Thin target (~100 [mg/cm2]) • High quality APFB2011 in Korea (T.Gogami)

  22. Experimental setup of JLab E05-115 Data taking : Aug-Nov 2009 p(e,e’K+)Λ HKS chamber wire configuration Tracking 2×10-4 7 [msr] 3 – 12 [deg] 2×10-4 8.5 [msr] 2 – 12 [deg] 7Li , 9Be , 10B , 12C , 52Cr ( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV ) 2 - 50 [μA] 10 - 300 [THz] CH2, H2O

  23. HKS Drift Chamber hit selectionwith TOF detectors Gravity • GREEN region Selective region • RED markers Selected hit wires • BLACK markers Rejected hit wires Particle direction

  24. Results of Introduction of new Tracking Code CH2 • NΛ¼ Nexpect  NΛ½ Nexpect Increased ! 52Cr Increased ! H2O

  25. Theoretical calculation of A=7 system -6.650.030.2 MeV from α L n n Four-body cluster model for T=1 triplet hypernuclei (E.Hiyama et al., NPC 80, 2009) α+ Λ + N + N JLab E01-011 7Li(e,e’K+)7ΛHe Preliminary -BL (MeV) CSB interaction is determined to reproduce BΛ of 4ΛH and 4ΛHe. APFB2011 in Korea (T.Gogami)

  26. (e,e’K+) experiment in JLab Hall-C Proof of feasibility 12C(e,e’K+)12ΛB E89-009 2000 1st generation exp.JLab E89-009 ENGE(e’) + SOS(K+) 12ΛB ~ 750 [keV] (FWHM) sΛ pΛ ~750 [keV] (FWHM) Establish exp. method 2005 2nd generation exp.JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7ΛHe,12ΛB,28ΛAl ~ 500 [keV] (FWHM) 28Si(e,e’K+)28ΛAl E01-011 Confirming stage pΛ dΛ sΛ Up to Medium heavy 2009 3rd generation exp.JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7ΛHe,9ΛLi,10ΛBe,12ΛB,52ΛV ≤ 500 [keV] (FWHM) ~600 [keV] (FWHM) Preliminary APFB2011 in Korea (T.Gogami) Analysis stage

  27. (e,e’K+) experiment in JLab Hall-A 12C(e,e’K+)12ΛB pΛ sΛ 2007 JLab E94-107 HRS’s (K+, e+)+ septum 9ΛLi,12ΛB,16ΛN ~ 670 [keV] (FWHM) 16O(e,e’K+)16ΛN sΛ APFB2011 in Korea (T.Gogami)

  28. HESのバックグラウンド • ハイパー核生成に関係した電子 赤 • HES側のバックグラウンド • 制動放射起因の電子 緑 • Møller散乱起因の電子 青 モンテカルロシミュレーションでそれぞれ150000イベント生成させた • バックグラウンドである、0o方向に集中するMøller散乱・制動放射起因電子を避けるTilt法を導入 e’ rate   第一世代  第二世代 200 [MHz]1 [MHz] Tilt法の概略図 APFB2011 in Korea (T.Gogami)

  29. Tilt角の最適化 • Figure of Merit (FoM) 6.5o • ハイパー核生成に関与した電子の計数率 S • Mφller散乱起因電子の計数率 NMφller • 制動放射起因電子の計数率 NBrems シミュレーションによる計数率の見積もり APFB2011 in Korea (T.Gogami) ビーム強度 30 [μA] , 100 [mg/cm2] を仮定

  30. 角度アクセプタンス 入射電子ビームのエネルギー 1.851 2.344 [GeV] • バックグラウンドがより前方に集中 • アクセプタンスをより前方へ 第二世代実験E01-011 • HESの角度アクセプタンスが広い ハイパー核の収量が増加 第三世代実験E05-115 APFB2011 in Korea (T.Gogami)

  31. 運動量アクセプタンス 52ΛV g.s. 測定するハイパー核の生成領域を広くカバーするように設計した。 Ei=2.344,ω=1.5[GeV] HKSとHESの運度量の相関 立体角 • 一様に生成した全粒子の数をNGen • 一様に生成した全粒子の立体角をΔΩGen • HESの最下流まで通過した粒子の数をNpass 立体角 ~6.5[msr]w/ splitter APFB2011 in Korea (T.Gogami)

  32. 89Y(π+,K+)89ΛY, 51V(π+,K+)51ΛV 1.45 [MeV] (FWHM) KEK-PS E369 89Y(π+,K+)89ΛY KEK-PS E369 51V(π+,K+)51ΛV 89Y(π+,K+)89ΛY KEK-PS E369 12C(π+,K+)12ΛC 51V(π+,K+)51ΛV 12C(π+,K+)12ΛC APFB2011 in Korea (T.Gogami)

  33. E05-115 experimental motivation(2) 1f7/2 FULL(8) f 7+ 6+ or 1d3/2 FULL(4) FULL(4) 6- 5- d • ls splitting • Core excited or ・ ・ ・ ・ ・ ・ 5+ 4+ p ls splitting ∝ 2l+1 or n = 28 p = 24 4- 3- s or 52Cr Λ 52ΛV d p f s Photo- and electro production of medium mass Λ-hypernuclei ,P.Bydzovsky et al. (2008) APFB2011 in Korea (T.Gogami)

  34. Spectroscopic experiment via (e,e’K+) reaction e + p➝ e’ + K+ + Λ Feynman diagram e- e e u u γ* K+ – γ* u s p d s p K+ u Λ Λ d n target nucleus measure Missing mass : M2HY = (Ee + MT - EK+ - Ee’)2 - ( pe - pK+- pe’)2 • Binding energy • Cross section APFB2011 in Korea (T.Gogami)

  35. P.Bydzovsdy ,photo- and electro production of medium mass Λ-hypernuclei, 2008 APFB2011 in Korea (T.Gogami)

  36. Λsingle particle energy • (e,e’K+) experiments in JLab • E89-009 (2000) • E94-107 (2004) • E01-011 (2005) • E05-115 (2009) D.J.Millener et al. PRC 38, 6, 1988 Woods-Saxson potential with a depth of 28 [MeV] and a radius parameter APFB2011 in Korea (T.Gogami)

  37. Feature of (e,e’K+) reaction (e,e’K+) (π+ , K+) (K- , π-) e + p➝ e + K+ + Λ π+ + n➝ K+ + Λ K- + n➝ π- + Λ e e – – u u u u Reaction K+ π+ – – K- π- s s d u d u γ* K+ – u s p d s d s d s n d d n d d u Λ Λ Λ u u u u d Momentum transfer (Typical ) ~300 [MeV/c] ~300 [MeV/c] ~90 [MeV/c] Λ can be bounded in deeper orbit Λ’s Spin At forward angle flip ≈ non-flip non-flip non-flip Spin dependent structure proton neutron neutron Λ’s from Mirror lambda hypernuclei primary secondary secondary Beam High quality , high intensity Target Thin (~100 mg/cm2) (Isotopically enriched) Thick(> a few [g/cm2] ) Thick(> a few [g/cm2] ) Energy resolution (FWHM) APFB2011 in Korea (T.Gogami) ≤ 500 [keV] 1 – 3 [MeV] 1 – 3 [MeV] Fine structure

  38. Theoretical calculation of A=7 system -6.650.030.2 MeV from α L n n Four-body cluster model for T=1 triplet hypernuclei (E.Hiyama et al., NPC 80, 2009) α+ Λ + N + N JLab E01-011 7Li(e,e’K+)7ΛHe Preliminary -BL (MeV) CSB interaction is determined to reproduce BΛ of 4ΛH and 4ΛHe. APFB2011 in Korea (T.Gogami)

  39. (e,e’K+) experiment in JLab Hall-C Proof of feasibility 12C(e,e’K+)12ΛB E89-009 2000 1st generation exp.JLab E89-009 ENGE(e’) + SOS(K+) 12ΛB ~ 750 [keV] (FWHM) sΛ pΛ ~750 [keV] (FWHM) Establish exp. method 2005 2nd generation exp.JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7ΛHe,12ΛB,28ΛAl ~ 500 [keV] (FWHM) 28Si(e,e’K+)28ΛAl E01-011 Confirming stage pΛ dΛ sΛ Up to Medium heavy 2009 3rd generation exp.JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7ΛHe,9ΛLi,10ΛBe,12ΛB,52ΛV ≤ 500 [keV] (FWHM) ~600 [keV] (FWHM) Preliminary APFB2011 in Korea (T.Gogami) Analysis stage

  40. (e,e’K+) experiment in JLab Hall-A 12C(e,e’K+)12ΛB pΛ sΛ 2007 JLab E94-107 HRS’s (K+, e+)+ septum 9ΛLi,12ΛB,16ΛN ~ 670 [keV] (FWHM) 16O(e,e’K+)16ΛN sΛ APFB2011 in Korea (T.Gogami)

  41. Elementary process p(e,e’K+)Λ JLab E05-115 p(e,e’K+)Λ,Σ0 ~40 hours (5 shifts) • p(e,e’K+)Λ,Σ0 are used for Energy calibration • Study of elementary process • Consistency check with past experiment Very preliminary APFB2011 in Korea (T.Gogami) R. Bradford et al. , FRC73, 2006

  42. Single Λ hypernuclear spectroscopy • (π+,K+), (K+,π+) spectroscopy • CERN, BNL, KEK • A = 7 – 208 • Resolution (FWHM) ~ a few MeV • γ-ray spectroscopy with Ge detector • KEK, J-PARC • A=7 – 16 • Resolution (FWHM) ~ a few keV • Decay pion spectroscopy • Mainz Univ. • A < 10 • Resolution (FWHM)< 100 keV • (e,e’K+) spectroscopy • JLab, (Mainz Univ.) • A=7 – 52 • Resolution (FWHM) ~ 500 keV Determine Absolute value APFB2011 in Korea (T.Gogami)

  43. (e,e’K+) reaction (e,e’K+) (π+ , K+) (K- , π-) e + p➝ e + K+ + Λ π+ + n➝ K+ + Λ K- + n➝ π- + Λ e e – – u u u u Reaction K+ π+ – – K- π- s s d u d u γ* K+ – u s p d s d s d s n d d n d d u Λ Λ Λ u u u u d Momentum transfer (Typical ) ~300 [MeV/c] ~300 [MeV/c] ~90 [MeV/c] Λ can be bounded in deeper orbit Λ’s Spin At forward angle flip ≈ non-flip non-flip non-flip Spin dependent structure proton neutron neutron Λ’s from Mirror lambda hypernuclei primary secondary secondary Beam High quality , high intensity Target Thin (~100 mg/cm2) (Isotopically enriched) Thick(> a few [g/cm2] ) Thick(> a few [g/cm2] ) Energy resolution (FWHM) APFB2011 in Korea (T.Gogami) ≤ 500 [keV] 1 – 3 [MeV] 1 – 3 [MeV] Fine structure

  44. JLab CEBAF ( Continuance Electron Beam Accelerator Facility ) • Requirement for accelerator • high duty factor • high intensity • smallemittance • small ΔE/E • (e,e’K+) experiment • Coincidence experiment (K+ and e-) • Small cross section ( ~100 [nb/sr] ) 1/1000 • Energy resolution sub MeV (FWHM) CEBAF can satisfy these requirements Thomas Jefferson National Accelerator Facility APFB2011 in Korea (T.Gogami) 100 [m]

  45. (e,e’K+) experiment in JLab Hall-C 2000年 1st generation exp.JLab E89-009 ENGE(e’) + SOS(K+) 12ΛB ~ 900 [keV] (FWHM) Proof of feasibility 2005年 2nd generation exp.JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7ΛHe,12ΛB,28ΛAl ~ 500 [keV] (FWHM) Establish exp. method Luminosity ×137 e’ rate 1/200 S/N ×2.7 2009年 3rd generation exp.JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7ΛHe,9ΛLi,10ΛBe,12ΛB,52ΛV ≤ 500 [keV] (FWHM) Medium heavy APFB2011 in Korea (T.Gogami)

  46. JLab E05-115 experiment APFB2011 in Korea (T.Gogami)

  47. E05-115 experimental motivation (1) • 2009 Aug – Nov @ JLab Hall-C • (e,e’K+) reaction • Target : 7Li , 9Be , 10B , 12C , 52Cr First try It is difficult experimentally. “ b.g. electron due to brems. ∝ ~Z2 “ • p-shell(7He , 9Li , 10Be , 12B) • Charge symmetry breaking (CSB) • ΛN-ΣN coupling Λ Λ Λ Λ BΛ[MeV] • Medium heavy (52V) • s-,p-,d-,f-orbit binding energy & cross section • Mass dependence of Λ single particle energy • l・s splitting,core configuration mixing • dΛ, fΛ –state Λ APFB2011 in Korea (T.Gogami) A = 52

  48. JLab E05-115 experimental setup e + p → e’ + Λ + K+ 7Li , 9Be , 10B , 12C , 52Cr 2×10-4 7 [msr] 3 – 12 [deg] 2×10-4 11 [msr] 2 – 12 [deg] APFB2011 in Korea (T.Gogami)

  49. JLab E05-115 experimental setup e + p → e’ + Λ + K+ 7Li , 9Be , 10B , 12C , 52Cr 2×10-4 7 [msr] 3 – 12 [deg] 2×10-4 11 [msr] 2 – 12 [deg] APFB2011 in Korea (T.Gogami)

  50. HKS detectors June 2009 in JLab Hall-C 1 [m] • HKS trigger • CP = 1X ×1Y × 2X • K = WC ×AC •  CP × K − π+ K+ p ~18 [kHz] (8 [μA] on 52Cr) K+ p, π+ Drift chambers -KDC1,KDC2- • Cherenkov detectors -AC,WC- • Aerogel (n=1.05) • Water (n=1.33) TOF walls -2X,1Y,1X- (Plastic scintillators) σ ≈ 200 [μm] TOF σ ≈ 170 [ps] APFB2011 in Korea (T.Gogami)

More Related