1 / 26

Water Management Tools

Water Management Tools. A Spatial Solution to Calculate Optimum Surface Water Target Levels Using a Water Management Decision Support System. Jaco van der Gaast The Winand Staring Centre Wageningen, The Netherlands. Contents. Introduction The model Swap Input Data Groundwater modeling

damara
Télécharger la présentation

Water Management Tools

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Water ManagementTools A Spatial Solution to Calculate Optimum Surface Water Target Levels Using a Water Management Decision Support System Jaco van der Gaast The Winand Staring Centre Wageningen, The Netherlands Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  2. Contents • Introduction • The model Swap • Input Data • Groundwater modeling • Crop growth • Results • Conclusions • Near future Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  3. Introduction WMTools is a Water Management Decision Support System that integrates a hydrological dynamic model with ArcView GIS to provide decision support for optimum water target- level calculations in relation with crop production for lowland areas. Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  4. Introduction The system combines high-resolution spatial information with time and depth dependent information. Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  5. Swap: System definition Precipitation Crop evaporation Soil evaporation Crop growth Drainage/infiltration Seepage\percolation Integrated modeling of the Soil-Water-Atmosphere-Plant system • Unsaturated and saturated top-soils • 1-D column • Surface water systems • Regional flow as lower boundary Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  6. Swap:Integrated modeling of the precipitation Soil-Water-Atmosphere-Plant Atmosphere system transpiration interception soil-evaporation Plant Surface waters surface runoff Unsaturated zone drainage/ subsurface infiltration Saturated - Transport of: soil water zone drainage/ soil heat subsurface solutes (salts, tracers) infiltration - Influenced by: Water repellency Swelling and shrinking Hysteresis deep percolation/ seepage Deep Groundwater Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  7. Input data Elevation Land use Soil Topography Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  8. Data: High-resolution elevation data • Laser scanning • Density of 1 point per 16m² • Accuracy: STD 15 cm Average error 5 cm Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  9. Data: Surface water system • Interaction with surface water • Multi-level drainage at regional scales Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  10. Data: Surface water system • Ditch density • Drainage resistance • Drainage levels • Control unit size • Weir characteristics Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  11. Groundwater modeling • GIS-input: • Seepage • Surface • water • system • Soil • Crop • Meteo • Elevation Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  12. Groundwater modeling Relationship between elevation and groundwater Calculations for eight years on a daily basis Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  13. Groundwater modeling Relationship between elevation and groundwater Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  14. Groundwater modeling Relationship between elevation and groundwater Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  15. Groundwater modeling Relationship between elevation and groundwater Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  16. Crop growth: Yield reduction Tact Transpiration reduction D Water-limited yield reduction Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  17. Crop growth: Groundwater level Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  18. Crop growth: Effect of soil type Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  19. Crop growth: Effect of water management Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  20. Crop growth: Different crops Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  21. Results: Traditional method Soil map Relative crop yield Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  22. Results: Relative crop yields Weir crest: Winter -110, Summer -90 Average relative yield: 87.7% Weir crest: Winter -130, Summer -110 Average relative yield: 90.1% Weir crest: Winter -150, Summer -130 Average relative yield: 90.1% Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  23. Conclusions • The system can be used to optimize water target levels in order to optimize crop yields in lowland areas. • The use of high-resolution spatial data makes the results more accurate. • The combination of high-resolution spatial information with time and depth dependent information in one system, gives more and easier access to the information needed for analyzing the results. Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  24. Conclusions • Groundwater • High groundwater levels are almost not effected by elevation • Low groundwater levels nearly follow the terrain profile • Groundwater fluctuations decrease by increasing elevation • The relation between groundwater level and elevation is affected by transpiration reduction • Crop growth • Elevation and soil type are important factors for crop yields • Water management can change the optimum crop growth in relation with elevation Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  25. Near future • Automatic optimization • Crop rotation • Optimization on farm-company level • Nutrient-limited crop growth • Economics • Cost effectiveness • Profits • Variation of parameters • Soil physics • Fuzzy soil map • Drainage • Bottom boundary Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

  26. More information: • Look at our web-site: www.sc.dlo.nl • Contact: Jaco W.J. van der Gaast MSc DLO Winand Staring Centre (SC-DLO) Department of Water Management P.O.B. 125, 6700 AC, Wageningen, The Netherlands tel: +31 317 474293, fax: +31 317 424812 e-mail: J.W.J.vanderGaast@sc.dlo.nl Jaco van der Gaast The Winand Staring Centre, P.O. Box 125, 6700 AC Wageningen, The Netherlands

More Related