400 likes | 562 Vues
Capstone Engineering Design Learning and Assessment. Denny Davis, PhD, PE Washington State University Engineering Education Seminar Purdue University September 18, 2008. Acknowledgements. Project Leadership Team
E N D
Capstone Engineering Design Learning and Assessment Denny Davis, PhD, PE Washington State University Engineering Education Seminar Purdue University September 18, 2008
Acknowledgements • Project Leadership Team • Denny Davis, Howard Davis, Michael Trevisan, Shane Brown, Washington State University • Steven Beyerlein, Jay McCormack, University of Idaho • Phillip Thompson, Seattle University • Olakunle Harrison, Tuskegee University • Project Consultants • Susannah Howe, Smith College • Patricia Brackin, Rose-Hulman Institute of Technology • Paul Leiffer, LeTourneau University • Durward Sobek, Montana State University • Jerine Pegg, University of Idaho • Funding • NSF DUE 0717561: Capstone Engineering Design Assessment:Development, Testing, and Adoption Research
Project Goal and Objectives • Goal • Develop an integrated system for effective, sustainable assessment of capstone engineering design outcomes • Objectives • Develop an assessment system suitable for broad adoption in capstone engineering design courses • Document effectiveness of the assessment system to measure student achievement • Investigate factors that affect assessment adoption by the capstone engineering design community
Guiding Research Questions Research Questions: • To what extent can assessments measure desired performances in learner and solution development? • How can assessments be integrated effectively into capstone design courses? • How can adoption of assessments be encouraged in capstone design courses?
Team- work Professional Development Solution Assets Design Processes Areas of Performance Learner Development 4. Idea Generation 3. Problem Definition 5. Idea Evaluation 2. Information Gathering Iteration/reflection 6. Idea Refinement 1. Recognition of Challenge 7. Implementation Solution Development
Learner Development • Professional Development • Individuals performing and improving individual skills and attributes essential to engineering design • Teamwork • Teams developing and implementing collective processes that support team productivity in design
Solution Development • Design Processes • Practices implemented that effectively and efficiently facilitate the production of valuable project assets • Solution Assets • Results from a design project that meet needs and deliver satisfaction and value to key project stakeholders
Capstone Course Assessment Framework Observation • Sampling • Student Sample • Knowledge Sample • Time of Sample • Measures • Outcomes • Levels • Metrics Assessment Triangle* • Tasks • Individual Tasks • Team Tasks • Profile of • Learner • Background • Skill Set • Motivation • Profile of • Professional • Roles • Behaviors • Scoring • Training • Reliability • Performance • Criteria • Learners • Solutions • Expectations • Students • Faculty • Clients • Administrators • Accreditors • Employers • Reporting • Learning • Grading • Improvement Model • Course Context • Project Mix • Professor Preparation • Infrastructure/Resources • Role in Program Interpretation *NRC, Knowing What Students Know.
Performance Criteria: Learner • Professional Development • Individuals document professional development aligned with their personal and project needs, professional behaviors, and ways of a reflective practitioner. • Teamwork • Teams demonstrate high productivity, synergistic individual and joint contributions, a supportive team climate, and well-developed team processes.
Performance Criteria: Solution • Design Processes • Designers resourcefully iterate among problem scoping, concept generation, and solution realization activities to co-develop problem understanding and a responsive design solution. • Solution Assets • Designers deliver and effectively defend solutions that satisfy stakeholder needs for functionality, financial benefit, implementation feasibility, and impacts on society.
Purposes of Assessment • Measure Achievement • Guide changes in instruction • Gather data for grading • Document student achievement in course • Study learning processes • Facilitate Learning • Guide learners’ effort to greater learning • Teach self- and peer-assessment skills • Establish reflective practitioner mindset
Assessing Reflective Practice • Instructional Activities • Assign reflections on performances • Assign similar reflections multiple times • Evidence • Quality of reflections improve over time • Reflective assignments reveal gains from natural reflective practice Reflection on Goals Reflection on Progress Reflection on Achievement
Capstone Course Context ? ? ? Learner Development ? Solution Development ? ? Problem Scoping Phase Concept Generation Phase Solution Realization Phase Project Timeline
Structure of Assignments Formative Summative • Self-Rating • Importance • Level • Self-Rating • Importance • Level • Set Target • Describe it • Action plan • Strengths • Describe them • Explain causes • Progress • A strength • An opportunity • Extension • Envision it • Define impacts
Structure of Feedback Performance Metric Student Response Level 1 Level 2 Level 3 Level 4 Level 5 Self-Rating Factor 1: X Narrative X Factor 2: • Descriptions • Analysis • Extension Narrative Feedback • Comments and suggestions
Assessing Learner Development Growth Progress [I] Feedback Growth Planning [I] Feedback Growth Achieved[I] Assessment Individual-focus Professional Practices [I] Feedback Team Member Citizenship [I] Feedback Team Member Citizenship [I] Feedback Team Processes [I] Feedback Team Contract[T] Feedback Team-focus Teamwork Achieved[I] Assessment Professional Development Processes Activities Team Development Processes Problem Scoping Phase Concept Generation Phase Solution Realization Phase Project Timeline Assessment Notation: [I] = individual assignment [T] = team assignment
Professional Development Assessments Growth Progress Growth Achieved Growth Planning Professional Practices
Teamwork Assessments Team Processes Teamwork Achieved Team Contract Team Member Citizenship
Assessing Solution Development Selected Concept [T] / Design Reflection [I] Assessments Proposed Solution[T] / Design Reflection [I] Assessments Proposed Solution[T] / Design Reflection [I] Assessments Defined Problem [T] / Design Reflection [I] Assessments Evaluation Concept Generation Processes [I] Feedback Solution Realization Processes [I] Feedback Solution Realization Processes [I] Feedback Problem Scoping Processes[I] Feedback Feedback Concept Generation Processes Solution Realization Processes Activities Problem Scoping Processes design implementation Problem Scoping Phase Concept Generation Phase Solution Realization Phase Project Timeline Assessment Notation: [I] = individual assignment [T] = team assignment
Design Processes/Solution Assets Design Phase • Problem scoping • Concept generation • Solution realization Design Reflection Design Reflection [Design Phase] Processes [Design Phase] Processes [Asset] [Asset] Asset • Defined problem • Selected concept • Proposed solution
Assessment Validity and Reliability • Scoring Reliability • Inter-rater reliability • Content Validity • Instructor and practitioner content analysis • Value to Users • Value gained by students and instructors
Why Web-Based Implementation? • Practicality • Reduce paperwork of assessment process • Enable automated processing of data • Facilitate testing of assessments • Effectiveness • More rapid feedback to students (learning) • Better view of team member performances • Supports reflection on progress and learning
Web-based System Concept Instructor Receives Summary Data (ratings, comparisons) 5 1 Instructor Makes Assignment (what, when) 3 Instructor Prepares Feedback (ratings, comments) Responses Saved and Compiled (secure database) 4 2 • Student Retrieves • Feedback • from peers (anonymous) • from instructor Students Complete Assignment (ratings, explanations)
Student Coaching of Members What makes it strong? How does it benefit the team?
Scoring of Student Work Comments or suggestions
Summary Measure desired performances • Individual and team development • Design process and solution development • Reflective practices Integration into capstone design • Assignments for instruction (formative) • Assignments for assessment (summative) Adoption of assessments • Web-based implementation • Reference-based performance scoring • Testing underway
Questions ? ? Contact Denny Davis, Washington State University davis@wsu.edu or davis162@purdue.edu