1 / 42

Floating Point

Carnegie Mellon. Floating Point. 15-213/18-243: Introduction to Computer Systems 4 th Lecture, 21 January 2010. Instructors: Bill Nace and Gregory Kesden. Carnegie Mellon. Last Time: Integers. Representation: unsigned and signed Conversion, casting

davidcscott
Télécharger la présentation

Floating Point

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Carnegie Mellon Floating Point 15-213/18-243: Introduction to Computer Systems4th Lecture, 21 January 2010 Instructors: Bill Nace and Gregory Kesden

  2. Carnegie Mellon Last Time: Integers • Representation: unsigned and signed • Conversion, casting • Bit representation maintained but reinterpreted • Expanding, truncating • Truncating = mod • Addition, negation, multiplication, shifting • Operations are mod 2w • “Ring” properties hold • Associative, commutative, distributive, additive 0 and inverse • Ordering properties do not hold • u > 0 does not mean u + v > v • u, v > 0 does not mean u · v > 0

  3. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  4. Carnegie Mellon Fractional binary numbers • What is 1011.101?

  5. Carnegie Mellon Fractional Binary Numbers • Representation • Bits to right of “binary point” represent fractional powers of 2 • Represents rational number: • • • • • •

  6. Carnegie Mellon Fractional Binary Numbers: Examples • Value Representation • 101.112 • 10.1112 • 1.01112 • Observations • Divide by 2 by shifting right • Multiply by 2 by shifting left • Numbers of form 0.111111…2 are just below 1.0 • 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0 • Use notation 1.0 – ε

  7. Carnegie Mellon Representable Numbers • Limitation • Can only exactly represent numbers of the form x/2k • Other rational numbers have repeating bit representations • Value Representation • 1/3 0.0101010101[01]…2 • 1/5 0.001100110011[0011]…2 • 1/10 0.0001100110011[0011]…2

  8. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  9. Carnegie Mellon IEEE Floating Point • IEEE Standard 754 • Established in 1985 as uniform standard for floating point arithmetic • Before that, many idiosyncratic formats • Supported by all major CPUs • Driven by numerical concerns • Nice standards for rounding, overflow, underflow • Hard to make fast in hardware • Numerical analysts predominated over hardware designers in defining standard

  10. Carnegie Mellon Floating Point Representation • Numerical Form: (–1)sM 2E • Sign bits determines whether number is negative or positive • SignificandM normally a fractional value in range [1.0,2.0). • ExponentE weights value by power of two • Encoding • MSB s is sign bit s • exp field encodes E (but is not equal to E) • frac field encodes M (but is not equal to M)

  11. Carnegie Mellon Precisions • Single precision: 32 bits • Double precision: 64 bits • Extended precision: 80 bits (Intel only)

  12. Carnegie Mellon Normalized Values • Condition: exp ≠ 000…0 and exp ≠ 111…1 • Exponent coded as biased value: E = Exp – Bias • Exp: unsigned value exp • Bias = 2k-1 - 1, where k is number of exponent bits • Single precision: 127 (Exp: 1…254, E: -126…127) • Double precision: 1023 (Exp: 1…2046, E: -1022…1023) • Significand coded with implied leading 1: M = 1.xxx…x2 • xxx…x: bits of frac • Minimum when 000…0 (M = 1.0) • Maximum when 111…1 (M = 2.0 – ε) • Get extra leading bit for “free”

  13. Carnegie Mellon Normalized Encoding Example

  14. Carnegie Mellon Denormalized Values • Condition: exp = 000…0 • Exponent value: E = –Bias + 1 (instead of E = 0 – Bias) • Significand coded with implied leading 0: M = 0.xxx…x2 • xxx…x: bits of frac • Cases • exp = 000…0, frac = 000…0 • Represents zero value • Note distinct values: +0 and –0 (why?) • exp = 000…0, frac ≠ 000…0 • Numbers very close to 0.0 • Lose precision as get smaller • Equispaced

  15. Carnegie Mellon Special Values • Condition: exp = 111…1 • Case: exp = 111…1, frac = 000…0 • Represents value ∞ (infinity) • Operation that overflows • Both positive and negative • E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞ • Case: exp = 111…1, frac ≠ 000…0 • Not-a-Number (NaN) • Represents case when no numeric value can be determined • E.g., sqrt(–1), ∞ − ∞, ∞ ∗ 0

  16. Carnegie Mellon Visualization: Floating Point Encodings −∞ +∞ -Normalized +Denorm +Normalized -Denorm NaN NaN −0 +0

  17. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  18. Carnegie Mellon Tiny Floating Point Example • 8-bit Floating Point Representation • the sign bit is in the most significant bit • the next four bits are the exponent, with a bias of 7 • the last three bits are the frac • Same general form as IEEE Format • normalized, denormalized • representation of 0, NaN, infinity

  19. Carnegie Mellon Dynamic Range (Positive Only) s exp frac EValue 0 0000 000 -6 0 0 0000 001 -6 1/8*1/64 = 1/512 0 0000 010 -6 2/8*1/64 = 2/512 … 0 0000 110 -6 6/8*1/64 = 6/512 0 0000 111 -6 7/8*1/64 = 7/512 0 0001 000 -6 8/8*1/64 = 8/512 0 0001 001 -6 9/8*1/64 = 9/512 … 0 0110 110 -1 14/8*1/2 = 14/16 0 0110 111 -1 15/8*1/2 = 15/16 0 0111 000 0 8/8*1 = 1 0 0111 001 0 9/8*1 = 9/8 0 0111 010 0 10/8*1 = 10/8 … 0 1110 110 7 14/8*128 = 224 0 1110 111 7 15/8*128 = 240 0 1111 000 n/a inf closest to zero Denormalized numbers largest denorm smallest norm closest to 1 below Normalized numbers closest to 1 above largest norm

  20. Carnegie Mellon Distribution of Values • 6-bit IEEE-like format • e = 3 exponent bits • f = 2 fraction bits • Bias is 23-1-1 = 3 • Notice how the distribution gets denser toward zero. 8 values

  21. Carnegie Mellon Distribution of Values (close-up view) • 6-bit IEEE-like format • e = 3 exponent bits • f = 2 fraction bits • Bias is 3

  22. Carnegie Mellon Interesting Numbers {single,double} • Description exp frac Numeric Value • Zero 00…00 00…00 0.0 • Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022} • Single ≈ 1.4 x 10–45 • Double ≈ 4.9 x 10–324 • Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022} • Single ≈ 1.18 x 10–38 • Double ≈ 2.2 x 10–308 • Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022} • Just larger than largest denormalized • One 01…11 00…00 1.0 • Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023} • Single ≈ 3.4 x 1038 • Double ≈ 1.8 x 10308

  23. Carnegie Mellon Special Properties of Encoding • FP Zero Same as Integer Zero • All bits = 0 • Can (Almost) Use Unsigned Integer Comparison • Must first compare sign bits • Must consider -0 = 0 • NaNs problematic • Will be greater than any other values • What should comparison yield? • Otherwise OK • Denorm vs. normalized • Normalized vs. infinity

  24. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  25. Carnegie Mellon Floating Point Operations: Basic Idea • x +f y = Round(x + y) • x xf y = Round(x x y) • Basic idea • First compute exact result • Make it fit into desired precision • Possibly overflow if exponent too large • Possibly round to fit intofrac

  26. Carnegie Mellon Rounding • Rounding Modes (illustrate with $ rounding) • $1.40 $1.60 $1.50 $2.50 –$1.50 • Towards zero $1 $1 $1 $2 –$1 • Round down (-∞) $1 $1 $1 $2 –$2 • Round up (+∞) $2 $2 $2 $3 –$1 • Nearest Even (default) $1 $2 $2 $2 –$2 • What are the advantages of the modes?

  27. Carnegie Mellon Closer Look at Round-To-Even • Default Rounding Mode • Hard to get any other kind without dropping into assembly • All others are statistically biased • Sum of set of positive numbers will consistently be over- or under- estimated • Applying to Other Decimal Places / Bit Positions • When exactly halfway between two possible values • Round so that least significant digit is even • E.g., round to nearest hundredth • 1.2349999 1.23 (Less than half way) • 1.2350001 1.24 (Greater than half way) • 1.2350000 1.24 (Half way—round up) • 1.2450000 1.24 (Half way—round down)

  28. Carnegie Mellon Rounding Binary Numbers • Binary Fractional Numbers • “Even” when least significant bit is 0 • “Half way” when bits to right of rounding position = 100…2 • Examples • Round to nearest 1/4 (2 bits right of binary point) • Value Binary Rounded Action Rounded Value • 2 3/32 10.000112 10.002 (<1/2—down) 2 • 2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 • 2 7/8 10.111002 11.002 ( 1/2—up) 3 • 2 5/8 10.101002 10.102 ( 1/2—down) 2 1/2

  29. Carnegie Mellon FP Multiplication • (–1)s1M1 2E1 x (–1)s2M2 2E2 • Exact Result: (–1)sM 2E • Sign s: s1 ^ s2 • Significand M: M1 * M2 • Exponent E: E1 + E2 • Fixing • If M ≥ 2, shift M right, increment E • If E out of range, overflow • Round M to fit frac precision • Implementation • Biggest chore is multiplying significands

  30. Carnegie Mellon Floating Point Addition • (–1)s1M1 2E1 + (-1)s2M2 2E2 • Assume E1 > E2 • Exact Result: (–1)sM 2E • Sign s, significand M: • Result of signed align & add • Exponent E: E1 • Fixing • If M ≥ 2, shift M right, increment E • if M < 1, shift M left k positions, decrement E by k • Overflow if E out of range • Round M to fit frac precision E1–E2 (–1)s1M1 + (–1)s2M2 (–1)sM

  31. Carnegie Mellon Mathematical Properties of FP Add • Compare to those of Abelian Group • Closed under addition? • But may generate infinity or NaN • Commutative? • Associative? • Overflow and inexactness of rounding • 0 is additive identity? • Every element has additive inverse • Except for infinities & NaNs • Monotonicity • a ≥ b ⇒ a+c ≥ b+c? • Except for infinities & NaNs Yes Yes No Yes Almost Almost

  32. Carnegie Mellon Mathematical Properties of FP Mult • Compare to Commutative Ring • Closed under multiplication? • But may generate infinity or NaN • Multiplication Commutative? • Multiplication is Associative? • Possibility of overflow, inexactness of rounding • 1 is multiplicative identity? • Multiplication distributes over addition? • Possibility of overflow, inexactness of rounding • Monotonicity • a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c? • Except for infinities & NaNs Yes Yes No Yes No Almost

  33. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  34. Carnegie Mellon Floating Point in C • C Guarantees Two Levels • float single precision • double double precision • Conversions/Casting • Casting between int, float, and double changes bit representation • double/float → int • Truncates fractional part • Like rounding toward zero • Not defined when out of range or NaN: Generally sets to TMin • int → double • Exact conversion, as long as int has ≤ 53 bit word size • int → float • Will round according to rounding mode

  35. Carnegie Mellon Floating Point Puzzles • For each of the following C expressions, either: • Argue that it is true for all argument values • Explain why not true • x == (int)(float) x • x == (int)(double) x • f == (float)(double) f • d == (float) d • f == -(-f); • 2/3 == 2/3.0 • d < 0.0 ⇒ ((d*2) < 0.0) • d > f ⇒ -f > -d • d * d >= 0.0 • (d+f)-d == f int x = …; float f = …; double d = …; Assume neither d nor f is NaN

  36. Carnegie Mellon Today: Floating Point • Background: Fractional binary numbers • IEEE floating point standard: Definition • Example and properties • Rounding, addition, multiplication • Floating point in C • Summary

  37. Carnegie Mellon Summary • IEEE Floating Point has clear mathematical properties • Represents numbers of form M x 2E • One can reason about operations independent of implementation • As if computed with perfect precision and then rounded • Not the same as real arithmetic • Violates associativity/distributivity • Makes life difficult for compilers & serious numerical applications programmers

  38. Carnegie Mellon More Slides

  39. Carnegie Mellon Creating Floating Point Number • Steps • Normalize to have leading 1 • Round to fit within fraction • Postnormalize to deal with effects of rounding • Case Study • Convert 8-bit unsigned numbers to tiny floating point format • Example Numbers • 12810000000 • 1500001101 • 3300010001 • 3500010011 • 13810001010 • 6300111111

  40. Carnegie Mellon Normalize • Requirement • Set binary point so that numbers of form 1.xxxxx • Adjust all to have leading one • Decrement exponent as shift left • ValueBinaryFractionExponent • 128100000001.00000007 • 15000011011.10100003 • 17000100011.00010004 • 19000100111.00110004 • 138100010101.00010107 • 63001111111.11111005

  41. Carnegie Mellon Rounding 1.BBGRXXX • Round up conditions • Round = 1, Sticky = 1 ➙ > 0.5 • Guard = 1, Round = 1, Sticky = 0 ➙ Round to even • ValueFractionGRSIncr?Rounded • 1281.0000000000N 1.000 • 151.1010000100N 1.101 • 171.0001000010N 1.000 • 191.0011000110Y 1.010 • 1381.0001010011Y 1.001 • 631.1111100111Y10.000 Guard bit: LSB of result Sticky bit: OR of remaining bits Round bit: 1st bit removed

  42. Carnegie Mellon Postnormalize • Issue • Rounding may have caused overflow • Handle by shifting right once & incrementing exponent • ValueRoundedExpAdjustedResult • 128 1.0007128 • 15 1.1013 15 • 17 1.0004 16 • 19 1.0104 20 • 138 1.0017134 • 6310.00051.000/6 64

More Related