460 likes | 581 Vues
In this resource, we explore the In-order Traversal technique used in Depth-First Search (DFS) algorithms. The In-order Traversal method processes the left subtree, then the root node, and finally the right subtree. This technique is essential for tree data structures, allowing for the systematic retrieval of node values in a structured way. Key examples and pseudo-code are provided to illustrate its application, making it easier for learners and practitioners to implement DFS effectively using In-order Traversal.
E N D
Depth-First Search In-order Traversal: Left Child - Root - Right Child Alyce Brady CS 470: Data Structures CS 510: Computer Algorithms
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G O
In-order Traversal:Left Child - Root - Right Child A B C D E F G H I J K L M N O H D I B J E K A L F M C N G O
in-traverse in-traverse left subtree visit current node e.g., print value in-traverse right subtree Pseudo-Code forIn-order Traversal