1 / 253

 Phases

 Phases. Philippe CHOMAZ - GANIL. Thermodynamic, Equilibrium Statistical ensemble Observation space Information & entropy Gibbs Equilibria Example: Mean-field Discussion What is temperature? What is equilibrium? Ensemble inequivalence Time dependent equilibria

december
Télécharger la présentation

 Phases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1.  Phases Philippe CHOMAZ - GANIL Thermodynamic, Equilibrium Statistical ensemble Observation space Information & entropy Gibbs Equilibria Example: Mean-field Discussion What is temperature? What is equilibrium? Ensemble inequivalence Time dependent equilibria Nuclear matter Isospin dependent EOS Phase transition Spinodal decomposition Neutron* & Supernovae Phase transi. finite system Zero of partition sum Bimodalities C negative 1

  2. Absolute necessity of the second principle R. Balian « Statistical mechanics » 52

  3. p q Absolute necessity of the second principle R. Balian « Statistical mechanics » • First principle: energy conservation • Time independent laws (symmetry) => E conserved • Classical : Point in phase space • Quantum : Vector of Hilbert space (q)q| q 52

  4. p q Absolute necessity of the second principle R. Balian « Statistical mechanics » • First principle: energy conservation • Time independent laws (symmetry) => E conserved • Classical : Point in phase space • Quantum : Vector of Hilbert space (q)q| t0 q t0 t0 t0 52

  5. p q Absolute necessity of the second principle R. Balian « Statistical mechanics » • First principle: energy conservation • Time independent laws (symmetry) => E conserved • Classical : Point in phase space • Quantum : Vector of Hilbert space (q)q| t0 q t0 t0 t0 52

  6. p q Absolute necessity of the second principle R. Balian « Statistical mechanics » • Initial condition => infinite information needed • Infinite accuracy needed (Chaos) • Classical : 6.N coordinates Point in phase space • Quantum : 2.∞ coordinates Vector of Hilbert space (q)q| q 52

  7. Absolute necessity of the second principle R. Balian « Statistical mechanics » • Initial condition => infinite information needed • Infinite accuracy needed (Chaos) • Classical : 6.N coordinates Point in phase space • Quantum : 2.∞ coordinates Vector of Hilbert space • Degree of freedom => infinite information needed • Our ignorance of initial comdition should be taken into account to make the theory meaningful 52

  8. <p> p <q> q Classical Chaos <= Quantum ∞ D. freedom • Classical : 6.N coordinates Chaos • Quantum : 2.∞ coordinates Projection <p> <p2> <q> <qp> <q2> • Our ignorance of initial comdition should be taken into account to make the theory meaningful 52

  9. -I- ThermodynamicsInformation theoryStatistical physics 2

  10. A-Thermo & Statistical ensembles R. Balian « Statistical mechanics » 52

  11. } { , , , … A-Ensembles R. Balian « Statistical mechanics » • Ensemble of events / partitions / replicas : • State • Classical : Point in phase space • Ensemble = {states+occurrence probability } => Phase space density • Quantum : Vector of Hilbert space => Density Matrix 52

  12. One macroscopic system is an ensemble Thermodynamics : infinite system One ∞ system = ensemble of ∞ sub-systems

  13. Surfaces Cannot be neglected ≠ A single microscopic system ≠ ensemble Finite system Cannot be cut in sub-systems

  14. A single microscopic system ≠ ensemble Thermodynamics & statistical physics do not apply to a single realization of a finite system Cannot be cut in sub-systems

  15. Cannot be cut in sub-systems Thermo describe several realizations One small system in time => statistical ensemble

  16. Thermo describe several realizations One small system in time => statistical ensemble Many events

  17. B-Observation space R. Balian « Statistical mechanics » 52

  18. R. Balian « Statistical mechanics » • State Classical : Phase space Density Quantum : Density Matrix 52

  19. B-Observation space R. Balian « Statistical mechanics » • State Classical : Phase space Density Quantum : Density Matrix • Observables Phase space functions Operators (Matrices) • Observation 52

  20. Observation 52

  21. <Â3> <Â2> ^ D <Â1> Geometrical interpretation of observation • Scalar product in Observable space • Observation • Observation 52

  22. <Â3> <Â2> ^ D <Â1> Geometrical interpretation of observation • Scalar product in Observable space • Observation HUGE (Infinite) space Classical => N*6 ; Quantum => N*∞ 52

  23. ^ ^ ^ ^ ^ ^ y z x Non locality = p-dependence Wigner Transform Basis of operator space (1 particle) • Spatial • Hilbert basis =>{|r>} (or {|p>}) : j(r) = <r|j> • Operators =><r|O|r’> (or <p|O|p’>) =>O = f(r,p) =∑oijklmn xiyjzkplpnpm ^ ^ ^ ^ ^ 8

  24. ^ ^ ^ ^ ^ ^ y z x Basis of operator space (1 particle) • Spatial • Hilbert basis =>{|r>} (or {|p>}) : j(r) = <r|j> • Operators =><r|O|r’> (or <p|O|p’>) =>O = f(r,p) =∑oijklmn xiyjzkplpnpm ^ ^ ^ ^ ^ 8

  25. <xipl> ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ y y z z <p> x x ^ D ^ ^ <x> xiyjzkplpnpm ^ ^ Basis of operator space (1 particle) • Spatial • Hilbert basis =>{|r>} (or {|p>}) : j(r) = <r|j> • Operators =><r|O|r’> (or <p|O|p’>) =>O = f(r,p) =∑oijklmn xiyjzkplpnpm => Infinite basis ^ ^ ^ ^ ^ Infinite space 8

  26. <xipl> <p> ^ D ^ ^ <x> ^ ^ Require the treatment of our ignorance • Initial condition cannot be known • The dynamics cannot be followed • Impossible to know everything • Only part of the information is relevant Infinite space 8

  27. C- Time evolution R. Balian « Statistical mechanics » 52

  28. R. Balian « Statistical mechanics » • State Classical : Phase space Density Quantum : Density Matrix 52

  29. C- Time evolution R. Balian « Statistical mechanics » • State Classical : Phase space Density Quantum : Density Matrix • Dynamics Hamilton Schrödinger Liouville-von Neumann Liouville 52

  30. C- Time evolution R. Balian « Statistical mechanics » • Observation Classical : Quantum : • Dynamics Heisenberg (Ehrenfest) • State Liouville-von Neumann Liouville 52

  31. C- Information and Entropy R. Balian « Statistical mechanics » 52

  32. C- Information and Entropy R. Balian « Statistical mechanics » • Shannon information of probability distribution p(n) • Measure the Information • Max when we know everything • Min when we know nothing • Decrease with our ignorance • Concavity • Additivity • Entropy

  33. D- Equilibrium et minimum bias (max S) R. Balian « Statistical mechanics » 52

  34. D- Equilibrium et minimum bias (max S) R. Balian « Statistical mechanics » • Gibbs equilibria are minimum bias distributions => distribution maximizing the entropy • Example Nothing known => States equiprobable => Microcanonical

  35. D- Equilibrium et minimum bias (max S) R. Balian « Statistical mechanics » R. Balian « Statistical mechanics » • Statistical ensemble: • Equilibrium = Max S: • Constraints (<H>, <N>): (Variational principle) ^ ^ • Lagrange multipliers Boltzman distribution Partition sum Equation of state 52

  36. D- Equilibrium et minimum bias (max S) Equilibrium ensembles R. Balian « Statistical mechanics » R. Balian « Statistical mechanics » • Statistical ensemble: • Equilibrium = Max S: • Constraints (<H>, <N>): (Minimum information) ^ ^ • Lagrange multipliers Boltzman distribution Partition sum Equation of state • Equilibrium entropy 52

  37. D- Equilibrium et minimum bias (max S) B-Thermodynamics R. Balian « Statistical mechanics » R. Balian « Statistical mechanics » • Statistical ensemble: • Equilibrium = Max S: • Constraints (<H>, <N>): (Variational principle) ^ ^ • Lagrange multipliers Boltzman distribution Partition sum Equation of state • Equilibrium entropy 53

  38. Example: mean field R. Balian « Statistical mechanics » • Trial state: • Sc functional of r: • Max constrained S: =>like in a mean field =>Equilibrium O=W =>Fermi-dirac statistic =>Mean field entropy (Independent particles) ^ (Variational principle) • Best approximation Sc: =>Best approximation logZ: 54

  39. -II- DiscussionTemperature Equilibra 2

More Related