270 likes | 396 Vues
This lecture notes series by Professor Ronald L. Carter delves into the Gummel-Poon static model for intrinsic NPN transistors, covering vital equations and characteristics such as base resistance, charge components, and transistor behavior under different bias conditions. Key insights include analyzing forward and reverse Gummel characteristics, depletion and accumulation capacitances, and surface effects. Compiled from foundational texts, these notes aim to enhance the understanding of bipolar junction transistor (BJT) modeling and its applications in electronic circuits.
E N D
EE 5340Semiconductor Device TheoryLecture 23 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
Gummel-Poon Staticnpn Circuit Model Intrinsic Transistor C RC IBR B RBB ILC ICC -IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} IBF B’ ILE RE E
IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2} Gummel Poon npnModel Equations
Charge componentsin the BJT **From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.
Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) [1+144iB/(p2IRB)]1/2-1 z = (24/p2)(iB/IRB)1/2 From An Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.-St.Electr. 41, pp. 655-658, 1997. RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB
iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB
iC and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec Ideal F-G Data
RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB
iE and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec Ideal R-G Data Ie
Ideal 2-terminalMOS capacitor/diode conducting gate, area = LW Vgate -xox SiO2 0 y 0 L silicon substrate tsub Vsub x
Band models (approx. scale) metal silicon dioxide p-type s/c Eo Eo qcox ~ 0.95 eV Eo qcSi= 4.05eV qfm= 4.1 eV for Al Ec qfs,p Eg,ox ~ 8 eV Ec EFm EFi EFp Ev Ev
Flat band condition (approx. scale) Al SiO2 p-Si q(fm-cox)= 3.15 eV q(cox-cSi)=3.1eV Ec,Ox qffp= 3.95eV EFm Ec Eg,ox~8eV EFi EFp Ev Ev
Equivalent circuitfor Flat-Band • Surface effect analogous to the extr Debye length = LD,extr = [eVt/(qNa)]1/2 • Debye cap, C’D,extr = eSi/LD,extr • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’D,extr
Accumulation forVgate< VFB Vgate< VFB -xox SiO2 EOx,x<0 0 holes p-type Si tsub Vsub = 0 x
Accumulationp-Si, Vgs < VFB Fig 10.4a*
Equivalent circuitfor accumulation • Accum depth analogous to the accum Debye length = LD,acc = [eVt/(qps)]1/2 • Accum cap, C’acc = eSi/LD,acc • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’acc
Depletion for p-Si, Vgate> VFB Vgate> VFB -xox SiO2 EOx,x> 0 0 Depl Reg Acceptors p-type Si tsub Vsub = 0 x
Depletion forp-Si, Vgate> VFB Fig 10.4b*
Equivalent circuitfor depletion • Depl depth given by the usual formula = xdepl = [2eSi(Vbb)/(qNa)]1/2 • Depl cap, C’depl = eSi/xdepl • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’depl
Inversion for p-SiVgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Acceptors Depl Reg Vsub = 0
Inversion for p-SiVgate>VTh>VFB Fig 10.5*
Approximation concept“Onset of Strong Inv” • OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG= VTh • Assume ns = 0 for VG< VTh • Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh • Cd,min = eSi/xd,max for VG > VTh • Assume ns > 0 for VG > VTh
MOS Bands at OSIp-substr = n-channel Fig 10.9*
Equivalent circuitabove OSI • Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 • Depl cap, C’d,min = eSi/xd,max • Oxide cap, C’Ox = eOx/xOx • Net C is the series comb C’Ox C’d,min
References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986