1 / 13

Solvent Effects

nonequilibrium excited state. Solvent Effects. Increased viscosity can increase luminescence intensity. H-bonding and dipole interactions with the solvent contribute to the Stokes shift. Ashutosh Sharma and Stephen Schulman, Fluorescence Spectroscopy , John Wiley & Sons, New York, 1999.

dulcea
Télécharger la présentation

Solvent Effects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. nonequilibrium excited state Solvent Effects Increased viscosity can increase luminescence intensity. H-bonding and dipole interactions with the solvent contribute to the Stokes shift. Ashutosh Sharma and Stephen Schulman, Fluorescence Spectroscopy, John Wiley & Sons, New York, 1999.

  2. Solvent Polarity Increasing solvent polarity usually causes a red-shift in fluorescence. http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html

  3. Solvent Polarity Joseph Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic / Plenum Publishers, New York, 1999.

  4. Temperature Increasing temperature increases ks Joseph Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic / Plenum Publishers, New York, 1999.

  5. Decreasing temperature can induce a blue-shift in fluorescence. Joseph Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic / Plenum Publishers, New York, 1999.

  6. Shpol’skii Spectroscopy • Analytical potential of fluorescence spectroscopy often limited by unresolved band structure (5-50 nm) • homogeneous band broadening – depends directly on radiative deactivation properties of the excited state (usually 10-3 nm) • inhomogeneous band broadening – various analyte microenvironments yields continuum of bands (usually few nm) • Solution: Incorporate molecules in rigid matrix at low temperature to minimize broadening • Result: Very narrow luminescence spectra with each band representing different substitution sites in the host crystalline matrix

  7. Shpol’skii Spectroscopy • Requirements: • T < 77K with rapid freezing rate • Matrix with dimension match • Low analyte concentration • Instrumentation: • Xe lamp excitation • Cryogenerator with sample cell • High resolution monochromator with PMT Analytes: polycyclic aromatic compounds in environmental, toxicological, or geochemical systems Garrigues and Budzinski, Trends in Analytical Chemistry, 14 (5), 1995, pages 231-239.

  8. Epi-Fluorescence Microscopy • Light Source - Mercury or xenon lamp (external to reduce thermal effects) • Dichroic mirror reflects one range of wavelengths and allows another range to pass. • Barrier filter eliminates all but fluorescent light. http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorosources.html

  9. Fluorescence Microscopy Need 3 filters: Exciter Filters Barrier Filters Dichromatic Beamsplitters http://microscope.fsu.edu/primer/techniques/fluorescence/filters.html

  10. Are you getting the concept? You plan to excite catecholamine with the 406 nm line from a Hg lamp and measure fluorescence emitted at 470 ± 15 nm. Choose the filter cube you would buy to do this. Sketch the transmission profiles for the three optics. http://microscope.fsu.edu/primer/techniques/fluorescence/fluorotable3.html

  11. Fluorescence Microscopy Objectives Image intensity is a function of the objective numerical aperture and magnification: Fabricated with low fluorescence glass/quartz with anti- reflection coatings http://micro.magnet.fsu.edu/primer/techniques/fluorescence/anatomy/fluoromicroanatomy.html

  12. Fluorescence Microscopy Detectors No spatial resolution required: PMT or photodiode Spatial resolution required: CCD http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagingdetectors.html

  13. Special Fluorescence Techniques LIF TIRF http://microscopy.fsu.edu/primer/techniques/fluorescence/tirf/tirfintro.html

More Related