1 4 solving absolute value equations n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
1.4 – Solving Absolute Value Equations PowerPoint Presentation
Download Presentation
1.4 – Solving Absolute Value Equations

play fullscreen
1 / 89

1.4 – Solving Absolute Value Equations

134 Views Download Presentation
Download Presentation

1.4 – Solving Absolute Value Equations

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. 1.4 – Solving Absolute Value Equations

  2. 1.4 – Solving Absolute Value Equations Absolute Value

  3. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only

  4. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only

  5. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs)

  6. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5|

  7. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5

  8. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| =

  9. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1

  10. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3

  11. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=

  12. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4

  13. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 +

  14. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5

  15. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3)

  16. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7|

  17. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4

  18. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 +

  19. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15

  20. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7|

  21. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4

  22. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 +

  23. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22|

  24. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4

  25. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 +

  26. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22

  27. 1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22 = 23.4

  28. Example 2

  29. Example 2 Solve |x – 18| = 5.

  30. Example 2 Solve |x – 18| = 5. |x – 18| = 5

  31. Example 2 Solve |x – 18| = 5. |x – 18| = 5

  32. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

  33. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

  34. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5

  35. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5

  36. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5

  37. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18

  38. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 x = 23

  39. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23

  40. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13

  41. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3

  42. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0.

  43. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0

  44. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9

  45. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9

  46. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note:

  47. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

  48. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

  49. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!

  50. Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!