Download
the planning control of robot dexterous manipulation n.
Skip this Video
Loading SlideShow in 5 Seconds..
The Planning & Control of Robot Dexterous Manipulation PowerPoint Presentation
Download Presentation
The Planning & Control of Robot Dexterous Manipulation

The Planning & Control of Robot Dexterous Manipulation

173 Vues Download Presentation
Télécharger la présentation

The Planning & Control of Robot Dexterous Manipulation

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. The Planning & Control of Robot Dexterous Manipulation Li Han, Zexiang Li, Jeff Trinkle, Zhiqiang Qin, Shilong Jiang Dept. of Computer Science Texas A&M University Dept. of Electrical and Electronic Engineering Hong Kong Univ. of Science and Technology Rodin

  2. Dexterous Manipulation • Tasks: a robotic hand • grasps an object, and • moves the object from a start configuration to a goal configuration. • Assumptions • Quasi-Static Systems • Rigid Body Motions • preserve distances and orientations • Known System and Environment Parameters

  3. Dexterous Manipulation Systems Japan Katharina (Germany) SAMM (O. Khatib, USA)

  4. Applications Digital Actor (J.-C. Latombe) Fixture (K. Goldberg) AerCam (NASA) Cellular Man. (Sci. American)

  5. Overview • Problem Statement • Force and Motion Feasibility Issues • Manipulation Planning and Control • Experimental Result • Summary HKUST Hand (Z. Li)

  6. goal start Dexterous Manipulation • Feasible States • Closure: Variety or Manifold • Feasible Velocities: Tangent Vectors • Feasible Forces: Co-Tangent Vectors • Collision-Free

  7. goal start Dexterous Manipulation • Manipulation Planner • Manipulation Controller • Feasible States • Grasp Statics: Force • Manipulation Kinematics: Motion

  8. Grasp Statics and Friction Cones Linear Matrix Inequality (LMI)

  9. Numerical Results • Convex Programming Involving LMIs (S. Boyd’s Convex Programming Group at Stanford) • Feasibility and Optimization: < 7.82ms (HP/Convex)

  10. Manipulation Kinematics • Plan an object trajectory • Use generalized inverse method to find a “best”possible joint trajectory • Infeasible Object Trajectory? • Contact Motion? Manipulation Kinematics: Grasp Kinematics

  11. Unreliable Manipulation Plan

  12. Modular Control System Architecture

  13. Experimental System & Result • Manipulation Objectives • Move the object • Improve the grasp

  14. Future Work • Large Scale Object Manipulation in a Crowded Environment • Regrasping and Dexterous Manipulation Planning • Dynamic Constraints • Uncertainty and Robustness • Applications …

  15. Conclusion • Grasp Statics • Linear Matrix Inequalities for Nonlinear Friction Cones • Convex Programming • Manipulation Kinematics • Tangent Space (Feasibility Constraints) • Inclusion of all kinematic variables • A Modular Control System Architecture • Manipulation Planning • “Local” Motion in a Clear Environment