1 / 7

Lorentz Transformations

Lorentz Transformations. (px,py,px,E) are components of a 4-vector which has same Lorentz transformation px’ = g (px + uE/c 2 ) u = velocity of transform py’ = py between frames is in

elita
Télécharger la présentation

Lorentz Transformations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lorentz Transformations (px,py,px,E) are components of a 4-vector which has same Lorentz transformation px’ = g (px + uE/c2) u = velocity of transform py’ = py between frames is in pz’ = pz x-direction. If do px’ -> px E’ = g (E + upx) + -> - Use common sense also let c = 1 Frame 1 Frame 2 (cm) Before and after scatter P460 - Relativity2

  2. center-of-momentum frame Sp = 0. Some quantities are invariant when going from one frame to another: py and pz are “transverse” momentum Mtotal = Invariant mass of system dervived from Etotal and Ptotal as if just one particle How to get to CM system? Think as if 1 particle Etotal = E1 + E2 Pxtotal = px1 + px2 (etc) Mtotal2 = Etotal2 - Ptotal2 gcm = Etotal/Ptotal and bcm = Ptotal/Etotal 1 2 at rest p1 = p 2 1 2 Lab CM P460 - Relativity2

  3. Particle production convert kinetic energy into mass - new particles assume 2 particles 1 and 2 both mass = m Lab or fixed target Etotal = E1 + E2 = E1 + m2 Ptotal = p1 --> Mtotal2 = Etotal2 - Ptotal2 Mtotal = (E12+2E1*m + m*m - p12).5 Mtotal= (2m*m + 2E1*m)0.5 ~ (2E1*m)0.5 CM: E1 = E2 Etotal = E1+E2 and Ptotal = 0 Mtotal = 2E1 1 2 at rest p1 = p 2 1 2 Lab CM P460 - Relativity2

  4. p + p --> p + p + p + pbar what is the minimum energy to make a proton-antiproton pair? • In all frames Mtotal (invariant mass) at threshold is equal to 4*mp (think of cm frame, all at rest) Lab Mtotal = (E12+2E1*m + m*m - p12).5 Mtotal= (2m*m + 2E1*m)0.5 = 4m E1 = (16*mp*mp - 2mp*mp)/2mp = 7mp CM: Mtotal = 2E1 = 4mp or E1 and E2 each =2mp 1 2 at rest p1 = p 2 1 2 Lab CM P460 - Relativity2

  5. Transform examples • Trivial: at rest E = m p=0. “boost” velocity = v E’ = g(E + bp) = gm p’ = g(p + bE) = gbm • moving with velocity v = p/E and then boost velocity = u (letting c=1) E’ = g(E + pu) p’ = g(p + Eu) calculate v’ = p’/E’ = (p +Eu)/(E+pu) = (p/E + u)/(1+up/E) = (v+u)/(1+vu) • “prove” velocity addition formula P460 - Relativity2

  6. A p=1 GeV proton hits an electron at rest. What is the maximum pt and E of the electron after the reaction? • Elastic collision. In cm frame, the energy and momentum before/after collision are the same. Direction changes. 90 deg = max pt 180 deg = max energy • bcm = Ptot/Etot = Pp/(Ep + me) • Pcm = gcmbcm*me (transform electron to cm) • Ecme = gcm*me (“easy” as at rest in lab) • pt max = Pcm as elastic scatter same pt in lab • Emax = gcm(Ecm + bcmPcm) 180 deg scatter = gcm(gcm*me + gbb*me) = g*g*me(1 + b*b) P460 - Relativity2

  7. p=1 GeV proton (or electron) hits a stationary electron (or proton) mp = .94 GeV me = .5 MeV • incoming target bcm gcm Ptmax Emax • p e .7 1.5 .4 MeV 1.7 MeV • p p .4 1.2 .4 GeV 1.4 GeV • e p .5 1.2 .5 GeV 1.7 GeV • e e .9995 30 15 MeV 1 GeV • Emax is maximum energy transferred to stationary particle. Ptmax is maximum momentum of (either) outgoing particle transverse to beam. Ptmax gives you the maximum scattering angle • a proton can’t transfer much energy to the electron as need to conserve E and P. An electron scattering off another electron can’t have much Pt as need to conserve E and P. P460 - Relativity2

More Related