Download
introduction to asynchronous circuit design specification and synthesis n.
Skip this Video
Loading SlideShow in 5 Seconds..
Introduction to asynchronous circuit design: specification and synthesis PowerPoint Presentation
Download Presentation
Introduction to asynchronous circuit design: specification and synthesis

Introduction to asynchronous circuit design: specification and synthesis

147 Vues Download Presentation
Télécharger la présentation

Introduction to asynchronous circuit design: specification and synthesis

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Introduction toasynchronous circuit design: specification and synthesis Part II: Synthesis of control circuitsfrom STGs

  2. Outline • Overview of the synthesis flow • Specification • State graph and next-state functions • State encoding • Implementability conditions • Speed-independent circuit • Complex gates • C-element architecture

  3. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist Design flow

  4. x x y y z z z+ x- x+ y+ z- y- Signal Transition Graph (STG)

  5. x y z z+ x- x+ y+ z- y-

  6. xyz 000 x+ 100 y+ z+ z+ x- 110 101 x- x+ y+ z- y- y+ z+ 001 111 y- y+ x- 011 z- 010

  7. xyz 000 x+ 100 y+ z+ 110 101 x- y- y+ z+ 001 111 y+ x- 011 z- 010 Next-state functions

  8. Next-state functions x y z

  9. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  10. Bus Data Transceiver DSr LDS Device D LDTACK DSr LDS VME Bus Controller DSw LDTACK D DTACK DTACK Read Cycle VME bus

  11. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  12. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  13. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  14. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  15. DSr+ DSw+ LDS+ D+ LDTACK+ LDS+ LDTACK- DTACK- DTACK- LDTACK- D+ LDTACK+ DTACK+ D- LDS- LDS- DSr- DTACK+ D- DSw- Choice: Read and Write cycles

  16. Circuitsynthesis • Goal: • Derive a hazard-free circuitunder a given delay model andmode of operation

  17. Speed independence • Delay model • Unbounded gate / environment delays • Certain wire delays shorter than certain paths in the circuit • Conditions for implementability: • Consistency • Complete State Coding • Persistency

  18. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  19. STG for the READ cycle DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D LDS DSr VME Bus Controller LDTACK DTACK

  20. LDS + LDS = 0 LDS - LDS = 1 Binary encoding of signals DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- LDS- LDS- LDS- LDTACK+ DSr+ DTACK- D+ D- DTACK+ DSr-

  21. 01100 00110 Binary encoding of signals 10000 DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- 10010 LDS- LDS- LDS- LDTACK+ DSr+ DTACK- 10110 01110 10110 D+ D- DTACK+ DSr- (DSr , DTACK , LDTACK , LDS , D)

  22. ER (LDS+) LDS+ QR (LDS-) LDS- LDS- LDS- ER (LDS-) QR (LDS+) Excitation / Quiescent Regions

  23. LDS+ LDS- LDS- LDS- 10110 10110 Next-state function 0  1 0  0 1  1 1  0

  24. DTACK DSr DTACK DSr D LDTACK D LDTACK 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 Karnaugh map for LDS LDS = 1 LDS = 0 - - - 0 0 - 1 1 - - - - - - - - 1 1 1 - - - - - 0 0 - 0 0 0 - 0/1?

  25. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  26. DSr+ DSr+ DSr+ Concurrency reduction LDS+ LDS- LDS- LDS- 10110 10110

  27. Concurrency reduction DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS-

  28. State encoding conflicts LDS+ LDTACK- LDS- LDTACK+ 10110 10110

  29. CSC+ CSC- Signal Insertion LDS+ LDTACK- LDS- LDTACK+ 101101 101100 D- DSr-

  30. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  31. Complex-gate implementation

  32. Implementability conditions • Consistency • Rising and falling transitions of each signal alternate in any trace • Complete state coding (CSC) • Next-state functions correctly defined • Persistency • No event can be disabled by another event (unless they are both inputs)

  33. Implementability conditions • Consistency + CSC + persistency • There exists a speed-independent circuit that implements the behavior of the STG(under the assumption that ay Boolean function can be implemented with one complex gate)

  34. a- c+ a 100 000 001 b c b+ b+ Persistency a c b is this a pulse ? Speed independence  glitch-free output behavior under any delay

  35. a+ 0000 a+ b+ 1000 b+ 1100 a- a- 0100 c+ c+ 0110 d+ d- d+ 0111 a+ a+ 1111 b- b- 1011 a- c- a- c- 0011 1001 a- c- d- 0001

  36. ab 0000 cd 00 01 11 10 a+ 1000 0 0 0 0 00 b+ 1100 1 0 a- 01 0100 c+ 1 1 1 1 0110 11 d- d+ 0111 1 10 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ER(d+) ER(d-)

  37. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 Complex gate

  38. S z C R Implementation with C elements • • •  S+  z+  S-  R+  z-  R-  • • • • S (set) and R (reset) must be mutually exclusive • S must cover ER(z+) and must not intersect ER(z-)  QR(z-) • R must cover ER(z-) and must not intersect ER(z+)  QR(z+)

  39. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 S d C R

  40. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 but ... S d C R

  41. Assume that R=ac has an unbounded delay 0000 a+ 1000 b+ 1100 a- 0100 c+ R+ disabled (potential glitch) 0110 d- d+ 0111 a+ 1111 b- 1011 a- c- 0011 1001 a- c- 0001 Starting from state 0000 (R=1 and S=0): a+ ; R- ; b+ ; a- ; c+ ; S+ ; d+ ; S d C R

  42. 0000 a+ 1000 b+ 1100 a- 0100 c+ 0110 d- d+ 0111 a+ 1111 b- 1011 S a- c- d 0011 1001 C R a- c- 0001 ab cd 00 01 11 10 0 0 0 0 00 1 0 01 1 1 1 1 11 1 10 Monotonic covers

  43. S d C R C-based implementations c d C b a c weak c d weak d a a b generalized C elements (gC)

  44. Speed-independent implementations • Implementability conditions • Consistency • Complete state coding • Persistency • Circuit architectures • Complex (hazard-free) gates • C elements with monotonic covers • ...

  45. y- y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ z- w- w+ 1010 0000 0101 w- y+ x+ z- y+ x+ x- 0010 0100 x- x+ y+ z+ 0110 z+ Synthesis exercise 1011 0011 0111 Derive circuits for signals x and z (complex gates and monotonic covers)

  46. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 1 0 1 00 0011 - 1 0 1 01 - 0 0 0 11 - 1 1 0 10 0111 Signal x

  47. y- 1001 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 Synthesis exercise 1011 wx yz 00 01 11 10 - 0 0 0 00 0011 - 0 0 0 01 - 1 1 1 11 - 1 0 0 10 0111 Signal z