1 / 35

Geometric Progression

Geometric Progression. Objectives. The presentation intends to: teach students how to solve problems related to geometric progressions; help students understand more about the given topic;. What are geometric progressions?.

Télécharger la présentation

Geometric Progression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometric Progression

  2. Objectives The presentation intends to: • teach students how to solve problems related to geometric progressions; • help students understand more about the given topic;

  3. What are geometric progressions? • It is a sequence in which each term is obtained by multiplying the preceding term by a constant • A sequence t1,t2, . . . . tn, . . . is called a geometric sequence ( or more commonly a geometric progression) if there exists a number r such that tn/tn-1 = r for n>1

  4. Also known as a geometric sequence, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed non-zero number called the common ratio.

  5. Symbols tn= last term n= number of terms r= common ratio a= first term Sn= sum of terms

  6. Formulas • tn= arn-1 • a= tn/rn-1 • Sn= a(1-rn)/1-r • r= tn/tn-1

  7. Examples Find the common ratio and general term of Geometric Progression • 1, 2/3, 4/9,… 2) 2,-4, 8,… r= 2/3 r= -4/ 2 1 = -2 =2/3 tn= 2(-2)n-1 tn= (2/3)n-1

  8. 3) √2, √6, 3√2,… r= √6 √2 =√3 tn=√2(√3)n-1 4) If x+3, 4x, 2x+18, form geometric progression, find x. 4x = 2x+18 x+3 4x 16x2= 2x2+6x+18x+54 14x2-24x-54=0 2 7x2-12x-27=0 (7x+9)(x-3)=0 x= -9 x=3 7

  9. 5) The fifth term of a geometric progression is 81 and the ninth term is 16. Find the first term, common ratio, and the nth term. t5= 81, t9=16, a=?, r=?, nth term= ? tn=arn-1 t5= ar5-1 t9= t5r9-5 81=a(2/3)4 16= 81r4 6561/16 81 tn=arn-1 4√16 = 2 tn = 6561/16(2/3)n-1 4√81 3

  10. 4 √r4=4 √256 r=4 t2=1/2(4)=2 t3=2(4)= 8 t4=8(4)= 32 Insert three positive geometric means between a)1/2 and 128 ½, t2, t3, t4, 128 t5= ar5-1 128= ½ r4 ½ 256= r4

  11. b)1 and 4 1, t2, t3,t4, r= √2 t5= ar5-1 4= 1r4 4 √r4=4 √4 r= 4√22 r= 2 2/4 r= 2 ½ t2= 1 √2 t3= (√2) (√2) = 2 t4= 2 (√2) = 2√2

  12. Find the sum of the first ten terms: • S10= 2(1-1624) • -1 • S10= 2046 2+4+8+16+… Sn= a(1-rn) 1-r S10= 2[1-(2)10] 1-2

  13. Find the sum of the geometric progression 10, -2, 2/5,… to 8 terms Sn= a(1-rn) 1-r S8= 10[1-(-1/5)8] 1-(-1/5) S8= 10(1-0.00000256) 1.2 S8= 8.33

  14. Find the t5of the geometric progression whose first element is -3and whose common ratio is -2. tn= arn-1 t5= (-3)(-2)5-1 t5= (-3)(-2)4 t5= (-3)(16) t5= -48

  15. Infinite Arithmetic and Geometric Progression

  16. Definition The sum of an infinite geometric progression a, ar, ar2, … with ‌‌ r ‌< 1 is given by, S=a/1-r whereas, -1<r<1 S is also called the sum to infinity of the G.P. a, ar, ar2 … In symbols, we write this as, S=lim Sn and read “S is the limit of Snas n increases without bound”

  17. The rational number 1/3 has repeating decimal .33333… which we can consider to be as infinite sum: 1/3 = .3+.03+.003+.0003+… This is an example of an infinite geometric series with ratio .1. Thus, .03 = .3x.1, .003 = .03x.1,.0003 = .0003x.1, and so on. We define an infinite geometric series in the following way.

  18. Find the sum of the following terms. 1+2+3+4+5… =infinite 3) 9+3+1/3… r=1/3 S= a 1-r S= 9 1-1/3 S= 9 2/3 S= 27/2 4) 50+25+25/2… r=1/2 S= a 1-r S= 50 1-1/2 S= 50 1/2 S= 100 1) 2) 2+4+6+8… =infinite

  19. Exercises:

  20. A. Determine whether the sequence is a geometric progression or not. If the sequence is a geometric progression give the common ratio (r) and the next three terms. 1) 12,22,32 5) 3, 3√3, 9 2) 1, -1/2, 1/3 6) 2, √3, 2/3 3) 1/6, 1/2, 3/2 7) 3.33, 2.22, 1.11 4) 4, 3, 9/48) -36, -2, -1/9

  21. B. Find the indicated term of the geometric progression whose first element is a and whose common ratio is r. a= ½ , r= 2/3, find t4 a= 4 , r=-1/2 , find t5 a= 81, r= 1/3, find t7 a= 1/3 , r= 3/2, find t6

  22. C. Find the sum to the infinity of the geometric progression. • 16, 4, 1 • ½, 1/6, 1/18 • -2, -1/2, -1/8 • 2/3, 1/9, 1/54 • 5.05, 1.212, 0.29088

  23. 1. Insert five geometric means between a. 1/2 and 32 b. 2 and 54

  24. E. For the specific value of n, find the nth term of each geometric series which starts as follows. 1. (a) 2+6+18+…, n = 7 (b) 5+10+20+…, n = 9 2. (a) 4+2+1+…, n = 8 (b) 25-5+1+…, n = 6

  25. Solutions and Answers

  26. 4) 4, 3, 9/4 r= 3/4 (3/4)(9/4)= 27/16 (3/4)(27/16)= 81/64 (3/4)(81/64)= 243/256 next terms are: 27/16, 81/64, 243/256 A. 1) 12,22,32 Not geometric progression 2) 1, -1/2, 1/3 Not geometric progression 3) 1/6, 1/2, 3/2 r=1/2 = 3 1/6 (3/2)(3)= 9/2 (9/2)(3)=27/2 (27/2)(3)= 81/2 next terms are 9/2,,27/2, 81/2

  27. 7) 3.33, 2.22, 1.11 Not geometric progression 8) -36, -2, -1/9 r= -2/-36= 1/18 (-1/9)(1/18)= -1/162 (-1/162)(1/18)= -1/2916 (-1/2916)(1/18)= -1/52488 next terms are: -1/162, -1/2916, -1/52488 5) 3, 3√3, 9 r= √3 (√3)(9)= 9√3 (√3) (9√3)= 27 (√3)(27)=27√3 next terms are: 9√3, 27, 27√3 6) 2, √3, 2/3 Not geometric progression

  28. 2) a= 4, r=-1/2 , t5= ? tn= arn-1 t5= (4)(-1/2)5-1 t5= (4)(-1/2)4 t5= (4)(1/16) t5= 4/16 t5= ¼ B. • a= ½ , r= 2/3,t4= ? tn= arn-1 t4= (½)(2/3)4-1 t4= (½)(2/3)3 t4= (½)(8/27) t4= 4/27

  29. 4) a= 1/3 , r= 3/2, t6=? tn= arn-1 t6= (1/3)(3/2)6-1 t6= (1/3)(3/2)5 t6= (1/3)(7 19/32) t6= 2 17/32 3) a= 81, r= 1/3, t7=? tn= arn-1 t7= (81)(1/3)7-1 t7= (81)(1/3)6 t7= (81)(1/729) t7= 1/9

  30. C. 2) ½, 1/6, 1/18 r= 1/3 S= a 1-r S= ½ 1-1/3 S= ½ 2/3 S= 3/4 1) 16, 4, 1 r=1/4 S= a 1-r S= 16 1-1/4 S= 16 3/4 S= 64/3

  31. 4) 2/3, 1/9, 1/54 r= 1/6 S= a 1-r S= 2/3 1-1/6 S= 2/3 5/6 S= 4/5 5) 5.05, 1.212, 0.29088 r= 0.24 S= a 1-r S= 5.05 1-0.24 S= 5.05 0.76 S= 6 49/76 3) -2, -1/2, -1/8 r= ¼ S= a 1-r S= -2 1-1/4 S= -2 3/4 S= -8/3

  32. a. 1/2 and 32 t7=t1r6 32= ½ r6 32= ½ r6 ½ 64= r6 6√64=r b. 2 and 54 t7= t1r6 54=2r6 2 2 6√27=6√ r6 r= 6 √27 r= 6√33 r=2 t2 =1 t3=2 t4=4 t5=8 t6=16 r= √3 t2= 2 √3 t3= 6 t4= 6 √3 t5= 18 t6= 18 √3

  33. E. 1. (a) 2+6+18+…,,n=7 tn= arn-1 t7= (2)(3)6 =1458 (b) 5+10+20+…, n=9 tn= arn-1 t9= (5)(2)8 = 1280

  34. 2. (a)4+2+1+…,n=8 tn=arn-1 t7=(4)(1/2)7 =1/32 (b) 25-5+1…,n=6 tn= arn-1 t6=(25)(-1/5)5 = -1/125

  35. Prepared by: Princess Fernandez Karen Calanasan Kyla Villegas

More Related