1 / 56

ECE 802-604: Nanoelectronics

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu. Lecture 26, 02 Dec 13. Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp 2 : electronic structure

evelia
Télécharger la présentation

ECE 802-604: Nanoelectronics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 802-604:Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

  2. Lecture 26, 02 Dec 13 Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp2: electronic structure 2DEG: E-k relationship/graph for graphene and transport 1DEG: E-k relationship/graph for CNTs and transport Examples Molecular Electronics R. Saito, G. Dresselhaus and M.S. Dresselhaus Physical Properties of Carbon Nanotubes VM Ayres, ECE802-604, F13

  3. CNT Unit cell in green: Ch = n a1 + m a2 |Ch| = a√n2 + m2 + mn dt = |Ch|/p cos q = a1 • Ch |a1| |Ch| T = t1a1 + t2a2 t1 = (2m + n)/ dR t2 = - (2n + m) /dR dR = the greatest common divisor of 2m + n and 2n+ m |T| = √ 3(m2 + n2+nm)/dR = √ 3|Ch|/dR N = | T X Ch | | a1xa2 | = 2(m2 + n2+nm)/dR VM Ayres, ECE802-604, F13

  4. Example: is Ch for the armchair CNT at right angles to Ch for the zigzag CNT? VM Ayres, ECE802-604, F13

  5. Example: is Ch for the armchair CNT at right angles to Ch for the zigzag CNT? Answer: No. It’s at an angle. HW: evaluate the angle. VM Ayres, ECE802-604, F13

  6. If this is the specified unit vector system, then armchair Ch is at the chiral angle and zigzag: Ch in a1 direction . a1 VM Ayres, ECE802-604, F13

  7. Example: for the paper cutout, is Ch for the armchair CNT at right angles to Ch for the zigzag CNT? VM Ayres, ECE802-604, F13

  8. Example: for the paper cutout, is Ch for the armchair CNT at right angles to Ch for the zigzag CNT? Answer. No. Answer doesn’t change. VM Ayres, ECE802-604, F13

  9. Example: for the paper cutout, number and create the largest possible zigzag CNT VM Ayres, ECE802-604, F13

  10. Example: for the paper cutout, number and create the largest possible zigzag CNT Answer: (5,0). HW: evaluate T and cut out the proper Unit cell length. VM Ayres, ECE802-604, F13

  11. Example: for the paper cutout, number and create the largest possible armchair CNT VM Ayres, ECE802-604, F13

  12. Example: for the paper cutout, number and create the largest possible armchair CNT Answer: (3,3). HW: evaluate T and cut out the proper Unit cell length. VM Ayres, ECE802-604, F13

  13. Example: Unit vectors a1 and a2 are not pointing in the same directions in (a) and (b). What is the goal of each arrangement? ARMCHAIR: ZIGZAG: VM Ayres, ECE802-604, F13

  14. Example: Unit vectors a1 and a2 are not pointing in the same directions in (a) and (b). What is the goal of each arrangement? Answer: ARMCHAIR: ZIGZAG: VM Ayres, ECE802-604, F13

  15. Lec 24: Graphene: the 6 equivalent K-points Bottom of the conduction band the 6 equivalent K-points metallic E ky kx This factor slices the graphene Eg2D VM Ayres, ECE802-604, F13

  16. Lec 24: At a K- point = metallic: Condition: Armchair (n,n) are always metallic VM Ayres, ECE802-604, F13

  17. Lec 24: At a K- point = metallic: Condition: Example: Prove this condition. First: identify the Unit vector system being used. VM Ayres, ECE802-604, F13

  18. Answer: First: identify the Unit vector system being used. ARMCHAIR: VM Ayres, ECE802-604, F13

  19. VM Ayres, ECE802-604, F13

  20. VM Ayres, ECE802-604, F13

  21. VM Ayres, ECE802-604, F13

  22. VM Ayres, ECE802-604, F13

  23. VM Ayres, ECE802-604, F13

  24. Ch = n a1 + m a2 |Ch| = a√n2 + m2 + mn cos q = a1 • Ch |a1| |Ch| For HW: VM Ayres, ECE802-604, F13

  25. For HW: Find K1 in this system. Show |K1| = 2p / |Ch| VM Ayres, ECE802-604, F13

  26. Lec 06: VM Ayres, ECE802-604, F13

  27. Lec 24: What you can do with an E-k diagram: Answer: VM Ayres, ECE802-604, F13

  28. 1DEG CNT: VM Ayres, ECE802-604, F13 Conduction energy levels

  29. Lec 24: Consider an (n, n) armchair CNT. This is where the periodic boundary condition on kX comes from in: That leaves just kY as open, MD calls it just k. VM Ayres, ECE802-604, F13

  30. Linearize graphene dependence around the K-point VM Ayres, ECE802-604, F13

  31. Lecture 26, 02 Dec 13 • Molecular Electronics: • Why not polyacetylene? or any conjugated “ene”? • Examples of possibilities • Actual performance • Electronic (p) structure brief review • Mechanical (s) structure brief review • New: bond alteration structure • Electronic result of bond alteration structure • Qualitative VM Ayres, ECE802-604, F13

  32. CNTs: Electronic structure Armchair (n,n) Zigzag (3n,0) Armchair (≠3n,0) VM Ayres, ECE802-604, F13

  33. CNTs: Electronic device VM Ayres, ECE802-604, F13

  34. Graphene: Electronic structure VM Ayres, ECE802-604, F13

  35. Graphene: Electronic device VM Ayres, ECE802-604, F13

  36. Polyacetylene: Electronic structure VM Ayres, ECE802-604, F13

  37. Polyacetylene: Electronic device VM Ayres, ECE802-604, F13

  38. Polyphenylene: Electronic structure: VM Ayres, ECE802-604, F13

  39. Polyphenylene: Electronic device VM Ayres, ECE802-604, F13

  40. VM Ayres, ECE802-604, F13

  41. VM Ayres, ECE802-604, F13

  42. If it looked the same in 2008 as in 1992, there are some problems that people are still trying to solve! VM Ayres, ECE802-604, F13

  43. Expected performance: Polyphenylene and Polyactetylene • Quasi-ballistic like graphene and SWCNTs Actual performance: Polyphenylene and Polyactetylene • Slow • Variable VM Ayres, ECE802-604, F13

  44. Factors that affect transport: • Availability of electrons AND empty states to take them • Scattering: • Particle-like: Lf < Lm < L • Wavelike (ballistic): L < Lm < Lf • Electrons in a 2D or 1D structure are wavelike and therefore should have limited scattering • Transport mechanism: • Diffusion • Tunnelling • Ballistic (Plasmon) • Charge transfer • Soliton (Polaron) • Exciton • Hopping • Injection (Contacts) VM Ayres, ECE802-604, F13

  45. Lecture 27, 03 Dec 13 • Molecular Electronics: • Why not polyacetylene? or any conjugated “ene”? • Examples of possibilities • Actual performance • Electronic (p) structure brief review • Mechanical (s) structure brief review • New: bond alteration structure • Electronic result of bond alteration structure • Qualitative • Quantitative • Solitons (polarons): Su-Schreiffer-Heeger (SSH) model VM Ayres, ECE802-604, F13

  46. Division of structural and electronic properties in sp2 makes both good: -C=C- Structure: s-bonds Electronic: p-bonds VM Ayres, ECE802-604, F13

  47. Structure: s-bonds Electronic: p-bonds p* -conduction band e- ECE, PHY -anti-bonding e- CHM Electronic: Delocalized p e- p -valence band e- ECE, PHY -bonding e- CHM VM Ayres, ECE802-604, F13

  48. Division of structural and electronic properties in sp2 makes both good: -C=C- Structure: s-bonds MECHANICAL Electronic: p-bonds ELECTRICAL VM Ayres, ECE802-604, F13

  49. Lecture 26, 02 Dec 13 • Molecular Electronics: • Why not polyacetylene? or any conjugated “ene”? • Examples of possibilities • Actual performance • Electronic (p) structure brief review • Mechanical (s) structure brief review • New: bond alteration structure • Electronic result of bond alteration structure • Qualitative • Quantitative • Solitons (polarons): Su-Schreiffer-Heeger (SSH) model VM Ayres, ECE802-604, F13

  50. H H H H “A” c c c c c c c “B” H H H -a +a Review: Polyacetylene: HAA types: c c H H VM Ayres, ECE802-604, F13

More Related