250 likes | 350 Vues
Explore the intricate mechanisms of jet formation in black hole accretion systems, analyzing the energy extraction processes and numerical models. Discover the segmented flow structures, disk-field geometries, and large-scale jet properties. Learn about the poloidal field structure, inner jet configurations, and the impact on energy budgets. Gain insights into the interactions between matter and electromagnetic fields, and the implications for massive objects like AGNs and XRBs.
E N D
Jet Formation and Propagation in Black Hole Accretion Systems Speaker: Jonathan C. McKinney Ann Arbor : Dec 17, 2005 McKinney (2005) (a,b,c) McKinney & Gammie (2004) Gammie, Shapiro, McKinney (2004) Gammie, McKinney, Toth (2003)
Why Study Jets? • “Pathological” energy-momentum transport • Accretion disks common • Jets produced in: • YSOs, WDs, NSs, BHs • Supersoft X-ray sources, symbiotic stars, classical novae, but not CVs • Not so “pathological” • Non-negligible to energy and radiative budget
Black Hole Accretion Systems 1038erg/s M~10M¯ 1052erg/s M~3M¯ 1044erg/s M~107M¯ Mirabel & Rodriguez (Sky & Telescope, 2002)
Outline • Black hole energy extraction • Numerical GRMHD model • Segmented accretion flow structure • Disk/Wind/Jet field geometries • Large scale Poynting jet • Piece-wise self-similar • Inner parabaloidal jet and conical exterior
Kerr Black Hole • Properties: • Spin: J • Mass: M • Up to ~30% of mass energy extractable Ergosphere • Examples: • GRB with M» 3M¯ • E»1054 ergs • L»5£ 1052 erg s-1 • AGN with M» 108M¯ • E»5.6£ 1061 ergs • L»3£ 1010 L¯ s-1 Event Horizon BH Ergo
Blandford & Znajek Poloidal Field • Assumptions: • Kerr BH (small j) • Force-free ED or EM>MA • Axisymmetric • Stationary Disk • Solve: • Force-free equations (JxB=0) • OR • Conservation equations • Find: • Outward Flux of Energy • Magnetic Field Structure • (monopole or parabolic)
Poloidal Field Disk GRMHD • Assumptions: • Kerr BH • Matter + fields (MA+EM) • Ideal MHD, ideal gas • Axisymmetric • Nonradiative • Initial hydro-equilibrium torus • Time-dependent • Solve: • Conservation equations • Induction equation with r¢B=0 constraint • Find: • Mass density & internal energy • Velocity & magnetic field
M87 Jet Formation Junor (1999) & Biretta (1999,2002)
Numerical Model Log Mass Density Parameters:
Initial State Poloidal Field
Mass and Field Structure Log of mass density Poloidal Field • Evacuated polar region • Turbulent equatorial region • Ordered polar field • Random equatorial field
Flow Structure Poynting Jet “Matter” Jet CORONA: MA~EM FUNNEL: EM dominated JETS: Unbound, outbound flow DISK: Matter dominated PLUNGING: MA~EM
9 7 5 4 1 3 2 8 6 Common Field Lines Balbus & Hawley (MRI) [1] Gammie & Krolik [2,3] Effect of reconnections [4,5] Lovelace or Blandford-Payne [6,7] Konigl & Vlahakis [6,7,~9] Uzdensky, Matsumoto [8] Blandford & Znajek [9] Final State Time Avg. State Common Temporary Never
Large Scale Jet • Outer Radius : 104 GM/c2 • 0.001AU for XRBs • 0.1R* or 1010 cm for GRB • 1.4pc for M87 • Final Time : 104 GM/c3 • 0.1-1s for XRBs • 0.1s for GRB • 5yrs for M87
Large Scale Jet AGN/XRB-like GRB
Kink Stability • Kruskal-Shafranov criterion for instability • Tomimatsu (2001) criterion for instability (slow rotation approximation)
Piece-wise SS Small radius (r<~100M) Large radius
Characteristic Surfaces B/Br=1 Field Lines O-Fast Light “Cylinder” O-Alfvén O-Slow B/Br=1 vr=0 I-Slow I-Alfvén Null (F=ZAMO) I-Fast / Horizon Ergosphere rin
GRMHD Summary • Segmented flow structure • BZ-like funnel region • Self-consistent, relativistic jets • Poynting outflow is Large • Matter+Poynting outflow » 1-3