120 likes | 282 Vues
Metadata Framework for a Statistical Data Warehouse. Lars-Göran Lundell Statistics Sweden Cardiff 24 May 2012. Metadata and Data Warehouse. Metadata is the DNA of the data warehouse , defining its elements and how they work together. - Ralph Kimball
E N D
Metadata Framework for a Statistical Data Warehouse Lars-Göran Lundell Statistics Sweden Cardiff 24 May 2012
Metadata and Data Warehouse • Metadata is the DNA of the data warehouse, defining its elements and how they work together. - Ralph Kimball • Metadata plays a very active and important part in the data warehouse environment. - Bill Inmon
Last workshop … • General metadata definitions • Metadata for a Statistical Data Warehouse • Metadata standards • Metadata quality • What’s next? • More detailed descriptions • Standards • Collection and usage • Storage • More
Metadata Framework for SDWH • Overview and Conceptual Model • Terms, definitions and relations • Basis for discussions • Priorities, relations • Basis for more detailed work • Roadmap • First version “ready” • Final version July 2013
Metadata categories Formalised Free-form Reference Structural Active Passive
SDWH metadata requirements • Active metadata • Assistance to end-users • Enables a metadata driven architecture • Formalised metadata • Must be easy to find, compare and evaluate • Structural metadata • Link between metadata and data Formalised Free-form Reference Structural Active Passive
Metadata subsets Statistical metadata Process metadata Quality metadata SDWH Metadata requirements Technical metadata Authorization metadata Data models More …
Metadata Structures • Metadata layer – conceptual, all metadata • Metadata registry – logical, standardised storage • Metadata repository – physical storage Formalised Free-form Reference Statistical Structural Process Active Quality Passive A metadata item The data store The metadata layer
GSBPM, SDWH and Metadata • The SDWH needs metadata from the “early processes” • Specify needs, Design, Build • “Early processes” need SDWH metadata • E.g., during the Design process SDWH Metadata 1 Specify Needs 2 Design 3 Build 4 Collect 5 Process 6 Analyse 7 Disseminate 8 Archive 9 Evaluate
Metadata and the Data Warehouse Layers Metadata Layer Data Access Layer Interpretation and Data Analysis Layer Integration Layer Source Layer
Minimum requirements (?) • Statistical metadata • Variable name, definition, reference time and source • Value domain (classification) mapped to the variable • Process metadata • Load time • Technical metadata • Physical location • Data type • Authentication metadata • Access rights mapped to users and groups